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> Pattern recognition algorithms based on fuzzy set theory
were investigated and compared to their analogs which use
traditional, or crisp set theory. The fuzzy K-means
clustering algorithm was investigated and the fuzzy
K~-nearest neighbor and fuzzy 1l-nearest prototype classifier

algorithms were. developed. - These:- pattern- recognition
algorithms produce membership assignments (values from zero
* to one) for the samples considered. Thus, a sample’'s

;*'degree of belonging™®R in a class can be assessed via these

membership assignments.
f;__‘_,,

The fuzzy K-means algorithm serves as an introduction to
pattern recognition using fuzzy set theory. By varying a : .
weighting factor(m), wused in the fuzzy K-means, over its L
allowable range (1 S m < o ) interesting results were ———
obtained. These results show that the fuzzy K-means ‘:fi
algorithm can outperform the crisp version. MWhile execution f_?j
of the fuzzy K-means algorithm requires more computations R
than the crisp version the resulting memberships provide -
more information than the simple cluster assignments
produced by the crisp K-means algorithm.

As with the fuzzy clustering algorithm, the membership
assignments produced by the fuzzy classification algorithms
provides a level of information above that provided by the
crisp classifiers. The ideal outcome would be to produce
membership assignments which indicate the sample’'s "degree
of belonging™ in the class of maximum membership. In
attempting to acheive this, a technique for labelled sample
membership initialization (used for unknouwn sample
membership assignments) was developed. The method resulted
in membership assignments for most unknown samples which S
were close to one when correctly classified(via maximum tf::
membership) and closer to ore-half when misclassified.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Recognizing patterns, classes, or populations in sample
data is an important part of many problems of current
interest. Examples such as scene analysis, character
recognition, and speech analysis are but a few of the many
areas in which pattern recognition techniques have been
utilized. Pattern recognition, as a scientific discipline,
strives to produce an automated procedure for assigning each
element of a set of input data to one of a finite set of
classes(1l). Thus, a pattern recognition system should
reduce the quantity of data present while retaining the
information carried. This reduction has become an
increasingly important factor as the quantity of data made
available by modern digital computer systems continues to
gromu. Without successful techniques for handling and
interpreting data, the sheer quantity produced can become a

burden rather than an aid. Pattern recognition techniques
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are recognized as providing useful approaches to solution of
this problem(l). As a result, such techniques have been
used extensively in the design of computerized information

processing systems(l).

The pattern recognition or classification model is
composed of the following three components: a transducer, a
feature extractor, and a classifier(2). The transducer
senses the input and converts it into a form suitable for

machine processing. The feature extractor receives the

output of the <transducer and extracts a set of feature
measurements which represent the nature of the data.
Finally, these feature measurements are received by a
classifier which assigns the input data elements to one of

the possible classes.

Each of the components described above is dependent to a
varying degree on the particular problem being considered.
Tﬁe design or specification of a suitable transducer is
highly problem dependent and is not considered in this
report. In general, of the remaining two components, the
problem of feature extraction is much more problem dependent
than that of classification. Many wuseful techniques for
feature extraction exist, some of which are discussed in
(1,2). While the problem of feature extraction is not
consjidered specifically in this study, it is important to

realize the connection betuween it and the classification
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problem. The better the input is represented by the feature

extractor, the easier the classification task becomes(2}.

1.2 Approaches to Classifier Design

The approaches wused to design automatic pattern
recognition systems can be divided into three categories(l).
These categories are template matching, decision theoretic
methods, and syntactic recognition. Template matching is
based on the idea of comparison of input samples to a set of
stored templates which represent each of the possible
classes. The decision theoretic techniques attempt to
formulate a set of classification rules which are defined by
a function of the sample features. The third techniqgue,
syntactic pattern recognition, suggests <that the sample
patterns can be represented using a hierarchical structure
present in the data. Each of these methods, while utilizing
different procedures, results in some form of decision rule

for data classification.

The template matching approach is based on a comparison

technique. That is, an unknown sample is compared to a set
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of templates stored in the system until a match is obtained.
An application where templace matching has been wutilized
successfully is that of character recognition(l). By
limiting the form of the characters under consideration,
such as typed characters of uniform size, the problem can be
reduced to a manageable form. Typically, a set of
measurements which allow unique representation of each
character allowed are available to the system. Then, an
input sample(character) is examined and the same set of
measurements are recorded. As a result, all that is
necessary to classify the sample is to compare the
measurements obtained to those stored in the system until a
match is found. Clearly, this technique places exact
restrictions on the samples under consideration(l1). Also,
if the number of characters allowed is very large the
storage requirements may be burdensome and the time required

to search for a match will be excessive.

The decision theoretic approach may be subdivided into
either deterministic or probabilistic techniques. The
deterministic techniques utilize analytic functions to

provide a functional description of the decision rule(2).

AsS an example of a deterministic pattern classifier,
consider the l~-nearest neighbor pattern classifier. The
nearest neighbor classifier finds the nearest labeled

sample(i.e. of known <class) using a distance measure. The

distance measure can be of varying type; the Euclidian

T

4

Tol el ek Tat ol AP AR it .! !..vf R A i A e N RN oy DIAER S, A e S SR N M AN M o g




T 7 TR T VT YT AT A - r S S AP S I e N T S CR e g St 20 et e e
SRRSO LA S M A Rt S I A A A A A R SRR St T e L T T T T T T T TS TY AT

i | PAGE 5
9

distance is one commonly used. Once the nearest neighbor

has been found, the sample pattern is assigned to the class

of this closest neighbor. Ties are resolved arbitrarily.

The probabilistic mathematical techniques utilize the
statistical properties of the pattern classes to achieve a
decision rule(2). A probability density function describing

the distribution of the class is obtained and used ¢to

| formulate the decision rule. One example of this method is
the Bayes classifier. The Bayes classifier is typically
used when the density functions are assumed to be
multivariate normal (i.e. the data is normally
distributed)(1). The mean and covariance matrix
corresponding to the classes under consideration are

obtained by either direct calculation or .-an approximation
technique. With these parameters, the normal density

function is completely defined. The density function for

Oy M Aissesseesy - AT eI gramd . ;ane

each class is then evaluated for the sample pattern under
Q consideration, these values are combined With the
é probability of occurrence of each class, and the sample is
then assigned to the class for which the resultant value is
a maximum. As with the nearest neighbor classifier, ties are
ﬁ . resolved arbitrarily. The mathematical techniques are
generally not as restrictive as those of the template
; matching method. Nevertheless, these techniques are also

5 dependent upon the application considered.

N
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The syntactic approach to the pattern recognition problem

utilizes the structure existing in the sample classes.

T AT

Formal language theory is applied to describe the levels of
structure present in terms of a particular grammar. of
course, this approach presupposes the existence of some form
of recognizable structure. As a result, syntactic
techniques are best applied to problems in which the
structure present can be characterized in some concise form.
Syntatic techniques have been used in pictorial pattern
recognition as well as in other aresas. Of the three
approaches discussed, the syntactic approach is the least
developed. But, its wuse has been receiving increased
attention recently. The theory of syntactic pattern
recognition is covered extensively in (3), and (1,2) provide

an introductory look at the topic.

The work presented here considers mathematical methods
for classifier design. More specifically, an investigation
into algorithms based on fuzzy set theory is presented with
comparisons to their crisp analogs. The algorithmic pattern

recognition techniques discussed are deterministic in

nature, except for one probabilistic method based on Bayes

decision theory. Of course, since the lines wmhich separate r"w
the three approaches are not hard and fast, it is important
to be able to draw from any of the three when developing an

effective classifier.
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1.3 Introduction to Fuzzy Sets

The theory of fuzzy sets was developed by Lofti Zadeh in
1965(4). The impetus behind the introduction of the fuzzy
set was to provide a means of defining categories which are
inherently imprecise(5). While it is a relatively neuw
concept, the theory is a natural extension of traditional
set theory. Since the introduction of fuzzy set theory, the
terms "hard®™ and "crisp™ have been used to describe sets
conforming to the traditional set theory. Although it has
taken some time for its use to spread, the theory of fuzzy
sets has been applied successfully to a variety of areas.
These include medical diagnosis, linguistic modelling,
artificial intelligence, and scene analysis as well as
pattern recognition. The results achieved in these
applications are useful and have stimulated further research

in the area.

Prior to the introduction of fuzzy sets, probability
theory was the primary mathematical means of describing
imprecision. Although many people still believe that
probability theory is all that is needed to handle problems
which are inherently imprecise, failure to examine all

possible methods of achieving a solution will very likely
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lead to a less than optimal solution. Upon comparison of

the imprecision, or fuzziness which is modelled by fuzzy set

theory to the randomness which probability theory models so
well, it should be clear that the two theories are distinct.
Consider the statement: "You are nearly correct". Using e
probability theory this, would be modelled as: "There is an ”

X% possibility that you are correct."(X could be something

near 90). But the intent of such a statement is to say that —
the response you supplied is close to the correct one, not,
as probability theory suggests, that there is a good chance
you are correct. Alternatively, fuzzy set theory models the
statement as: "The correctness, on a scale from zero to one,
of your answer is X."(X could be near 0.9). Now this is the
true intent of the statement given above. Thus, the
difference between fuzzy modelling and stochastic modelling

is tﬁat fuzzy set theory handles imprecision easily whereas

probability theory is best suited to random processes(5).
So, it is not a matter of which theory is best, but instead

which theory is best suited to the problem at hand.

)
The basis of fuzzy set theory is that set elements may T;S
take , on a membership other than complete i;i
memzz;ship(membership=1) or non-membership(membership=0). i;:;
Thus, as is often the case in real world situations, a set 35?3
may consist of elements with varying degrees of similarity. ;i;
7‘9 measure of similarity is assigned via a membership L;:
function. In traditional, or ncrisp®" set theory the Q;i
L;%
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PR S Sy PR Sl el W PYOAE VAT S . 0 &0 A A" o M Gl S W . PGPS PSP AP ST SR Wy T S




PAGE 9 .
o
membership function values are restricted to zero or one. ;}4
But, in fuzzy set theory an element's membership function r‘*
may take on any value in the closed interval [ 0,1 1 . Thus ii;
more flexibility results by using fuzzy set theory to ;“;
describe classes and their members. For a more complete f;q
discussion of the theory of fuzzy sets, the reader is ;};
referred to (6) which provides an excellent and thorough 3;
presentation of the theory. ffi
T
The following examples illustrate the usefulness of fuzzy j;;i
sets for describing classes which exist in the world. t%%

Consider the class of all young people in the world. ‘
Clearly, we must define what attribute a person must possess ;f,ﬁ
to be considered young before determining who belongs in the :f::
class. One might say that a person is young if they are igiﬁ
less than some particular age. Then, using crisp set theory ;;;
to describe this class we simply say that everyone less than ii:;
the given age is young and all others are not. On the other 5fi
hand, using fuzzy set theory we assign a membership in the if%
class of young people to all persons considered. Thus, ‘hiﬁ
using age to define young people, a five year old person T~j
might have a membership of 0.95 in the class while a ninety i Vi
vyear old person might have a membership of 0.1 in the class. L;J

Clearly, the latter description provides more information to
the observer and as a result should be more useful to iji
someone concerned wWwith young people of the world. As

another illustration, consider the classic example of the
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set of all bald persons. As before we must define what
attribute a person must posses to be considered a member of
the set. Should a person whose hairline has receded a
couple of inches be a member? Of course a person with no
hair will be a member. But where do we set the defining
line for baldness? Without going any further uwith this
example it should be clear that crisp set theory will not
provide much help in identifying the set of bald people
unless we all can agree at what stage a person is considered

bald.

With just the two examples presented above it should be
clear that there are many cases in the world where the
models based on crisp set theory fall short of providing a
useful description of things, people, or places. So, as
Professor Zadeh proposed, the use of fuzzy set theory may

indeed perform better in these cases.
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CHAPTER 2

FUZZY CLUSTERING

2.1 Introduction

As discussed in chapter one, evaluation of large data
sets can be a difficult task simply because of the volume of
data present. One way of reducing the data is to wuse a
clustering procedure to extract information from the rauw
data. Roughly speaking, clustering procedures yield a data
description in terms of clusters, or groups of data points

which possess some form of similarity(2).

When the <clustering procedures are based on crisp set
theory a sample in the data set must be classified as
belonging to one and only one cluster(l). This constraint
is imposed by the mathematical model based in crisp set
theory. As an example, consider the case of a set of data
samples taken from three classes, one being a hybrid of the
other two classes resembling each non-hybrid to the same

degree. If we have no prior knowledge of the actual number

a P AP it bt Boradriemdl . o P TR D SE T R G - )
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of classes present and partition the data into two clusters,
the following should occur. If the two non-hybrid classes
are separable, samples taken from these classes will be
placed in different clusters. But, what of the samples from
h the hybrid class? These samples will likely be divided into
1 the two classes resulting in clusters which are distorted
é from their natural shape and density. In addition, the
i ) samples from the hybrid data will be lost amongst the other
; samples with nothing to indicate a difference in their

origin.

Alternatively, a fuzzy clustering technique does not have
the same constraint as that imposed by crisp set theory.
Instead, samples are assigned membership in all classes(5).
Returning to the example problem described above, the two
non-hybrid classes w®will have high membership(close to one)
in one cluster and low membership(close to zero) in the

second cluster. Of course, each non-hybrid will have high

membership in different clusters. Now, consider the samples
from the hybrid class. Since they do not resemble one
non-hybrid more than another they will be assigned

membership in each cluster very close to one-half. Thus,
these samples Will be recognized as not belonging to one
cluster more than another, as they should be. This example
points out the essence of fuzzy clustering. That is, fuzzy
clustering procedures do not force a sample into one and

only one cluster. Instead, a sample's "degree of belonging"

......
..........




PAGE 13

in a particular cluster can be interpreted via its

membership assignments.

In both cases of the example given above, as in most
clustering procedures, the technique in both crisp and fuzzy
methods is to assign individual data points to a cluster
such that the resulting clusters produce a natural grouping
' ) of the data. Of course, we must define what is meant by a
2 natural grouping. Typically this is defined by a measure of
similarity between samples as well as a criterion for
evaluating the partition which results from the clustering
procedure(2). Thus, the choice of similarity measure and

criterion function in a clustering procedure strongly

A aae

influences the type of clusters obtained.

2.2 Similarity Measures

The similarity measure used in a clustering procedure
defines what mathematical properties of the data should be
used to identify clusters(5). Properties such as distance,
angle, curvature, symmetry, and intensity are some which may

be of interest. Clearly, no one measure of similarity will
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. be universally applicable. Often the choice of one measure
[
i over another is a subjective one, with considerations of

k prior knowledge and ease of implemetation playing a role.

The most obvious measure of similarity between two
samples is the distance betuween them(2). Of course there
are several ways in which the distance between two points
can be defined. The Euclidian distance squared between two

sample vectors X; and 2Z;

D2 = (X;-23)t(X;-23)

is one commonly used measure of similarity, with a smaller
distance corresponding to a greater similarity. Use of the
Euclidian distance to test similarity in a clustering
procedure produces clusters which are hyperspherical(2).

The Malahanobis distance from a sample vector X; to a mean

vector M ,

o

D2 = (X;-")* C-1 (Xy-M) _—
]
R
R

is a useful measure of similarity when the statistical Lh‘
- -
properties of the data are being considered( hera C ~-! is j;&ﬂ
2
Aelideindiosaiinusinsdanedin it e i i i At i s _J
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. — .

the inverse covariance matrix of the sample data). This
I similarity measure produces clusters which are
: hyperellipsoids(2). Distance measures as a form of

comparison are by no means the only wuseful similarity

measures.

oI IV,

A nonmetric similarity measure between two vectors X and

Z,

Xtz

nxuwzi

represents the cosine of the angle between the two vectors X
and 2Z. This similarity measure is a maximum when the
vectors are oriented in the same direction with respect to
the origin. Thus, this measure is useful when clusters tend

to align themselves along the principle axis(1l).

The similarity measures given above are some of those

commonly used in clustering problems. Of course many more

’ similarity measures exist, some of which are discussed in
(1,2,5). For the pattern recognition algorithms considered

in this report, the Euclidian distance measure is used.

This similarity measure was chosen since on the whole very

little prior knowledge concerning the types of clusters to

LR .. PR R, PRPRE Wl W : i > b e ettt = B PO IR NP G R R PR O Y
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expect in the test data was available. In addition, by
using this measure exclusively, variability in results due
solely to the use of different distance measures uwas

eliminated.

2.3 Criterion Functions

In order to obtain the set of K clusters, or subsets of a
sample set which are the "most desirable™, we need to define
a criterion function which measures the quality of the
clusters found. The ™most desirable™ clusters are those
which contain samples which are somehow more similar than
samples contained in a different cluster(2). Thus, once
such a criterion function is defined, partitioning the data
such that the criterion function is an extreme(maxima or
minima) will produce the "most desirable"™ clusters
obtainable under the given criteria. Of course, the result
does not necessarily represent the naturally occurring
clusters, if any, in the set of samples. The extent to
which the clusters obtained represent the naturally
occurring clusters is dependent wupon the particular choices

for a similarity measure and criterion function(2).
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The most widely used clustering criterion function is the

F I

sum-of-squared-error criterion(l). Let n; be the number of

samples in a proposed cluster and let m; be the mean of

-2 Dt

those samples,

1 ny
my = — X xj
nyji=1

LR Al o i

The sum of squared errors is defined as,

k njy
Je = I E lx;-myli2
=0 i=0

where K is the number of clusters and n; is the number of
vectors in the jth cluster. The interpretation of this
criterion function is as follows. For a given cluster, the
mean vector my is the best representative of the samples in
the cluster in the sense that it minimizes ¢the sum of
squared lengths of the "error"™ vector lix;-myll (2). As a
result, J, measures the total squared error incurred by
. representing the n samples by the K cluster centers. Then
the optimal partition as defined by this criterion function
is one which minimizes Jo, . Clusters resulting from the use

of the sum-of-squared-error as the criterion function are

often called "minimum variance" partitions(2). The fuzzy

e -.'J
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analog to the sum-of~-squared-error criterion is very much

F like the one given above. The difference is that the
é distance measure for each vector x is multiplied by x's
E membership in the class raised to the power m, where m is a

weighting factor usually taken as two.

The clustering problems best suited to the use of J. are
those which form well separated compact "clouds". One
problem arising from the use of this criterion when there is
a large difference in the number of samples in different
clusters is that the large clusters may be split because of
the small reduction in squared error being multiplied by
many times in the sum(5). Situations producing such a
problem often occur when there exists single points well

away from the more dense regions of the cluster.

There are other useful criterion functions, several of
which are discussed in (2). The common feature of the
criterion function presented above as .well as those in (2)
is that they model the clustering problem as one in which
the samples form well separated "clouds™ of points. HWhile
this model may be reasonable in some cases it does not

“ represent the majority of the <clustering problems which are

of concern. As a simple example consider the case of the
"cloud within a cloud”, a dense cluster embedded in the
center of a diffuse cluster. Clearly, utilizing a criterion

which uses the model described above will not likely produce
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a useful partition. Nevertheless, criterion such as the
minimum squared error function are often used as a starting
point, then a different criterion function must be devised

if the results are not meaningful.

2.4 Clustering Methods

2.6.1 Hierarchical Methods

This group of methods were originally utilized in the
field of biological taxonomy where individuals are grouped
into species, species into genera, genera into families, and
so on(2). Hierarchical clustering contains both
agglomerative(merging) and divisive(splitting) techniques.
In both cases the procedure is to form new clusters by
reallocating membership of one point at a time, based on a
given similarity measure(5). Thus, the resulting clusters
form a hierarchy of nested clusters. Because of their
ctonceptual and computational simplicity, hierarchical
methods are among the best known(2). They are suitable for
use when the wunderlying structure of the data is

dendritic(5). An  introductory look at the methods of

P EPAS APPSOy . e . TP WY G ST S ’L_.g._n . S o e ad b . - 2 1
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hierarchical clustering is presented in (2). In addition, a
discussion of fuzzy hierarchical clustering techniques is

presented in (7).

2.6.2 Graph-Theoretic Methods

In this group the set of samples is regarded as a node
set, and edge weights between pairs of nodes can be based on
a similarity measure betuween pairs of nodes(5). The
clustering criterion may be some measure of connectivity
between groups of nodes. Breaking of edges in a minimal
spanning tree to form subgraphs is an often used
graph-theoretic clustering strategy(5). The benefit of
graph theoretic techniques is that they allow consideration

of more intricate structures than the isolated "cloud-like"

clusters produced by the mathematics of normal mixtures and

minimum-variance partitions(2). o

2.4.3 Objective Function Methods

g
e
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These methods generally allow the most precise(but not
necessarily more valid) formulation of the clustering
criterion(5). Objective function methods make use of
criterion functions, such as those described above, as a
measure of each clustering candidates "desirability". Thus,
the optimum clusters under these methods are those which
produce local extrema of the objective function(5). The
K-means algorithm described in the following section is of

this type.

2.5 K-means Algorithm

This algorithm, in both the fuzzy and crisp versions is
based on the minimization of the within-group sum of squared
error criterion. Both the fuzzy and crisp algorithms are
given below. The crisp K-means algorithm is included to
provide a comparison between fuzzy and crisp clustering

results. The notation used in the algorithms is as follous.

=
m

number of clusters specified

number of data samples

-
"
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n; = number of sample vectors in the ith cluster
{X)} = the set of n sample vectors il
m = weighting factor

Ul = membership function array for the lth iteration

Usy = the membership of the jth vector i

in the ith cluster b
{Vl} = the set of K fuzzy cluster centers

for the 1th iteration
{Z2} = the set of crisp cluster means —

for the lth iteration | S
Al = any matrix norm(for example the max of 5

the absolute values of all elements)

L.
The procedures for the fuzzy K-means algorithm are, mA
BEGIN R
Set K, 25K<n —
Set € , €20 b
Set m, l<m<w L
Initialize U°
Initialize 1=0 K
DO UNTILC Huz-uz=-1) < ¢ ) R,
Increment 1 W
Calculate {V;2)} using 2.5a and UI-! —_—
Compute Ul using 2.5b and {V;1)} b
END DO UNTIL o
END -
*
n
L (uys5)"xy
i=1 -
2.5 V; = —
n K
E (uyy)”
i=1
1/l xy=-vyli27tm=-1) -

2.5b uyy =
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K
EC(1/l x3=velld27tm=-11 S
k=1 ;“

The crisp K-means algorithm is as follows.

BEGIN
Set K, 2<K<n
Initialize {Z;°} by arbitrary assignment
as vectors in the sample set
Initialize 1=0 S
DO UNTIL ¢ 1Zy2-2,2" i<, ¥V i = 1,2,...,K ) e

Increment 1 L.
Assign each xe{X} to the jth cluster if
Wx~252-fl<Ix-2,2-)l V i=1,2,...,K
Compute {Z,2)} using 2.5¢c
END DO UNTIL SRR
END ——
b
2.5¢ 23 = = I xy ié;
nyj=1 S
e
’-n-—-—
As the statements of the algorithms illustrate, both are
relatively simple procedures. Although neither of these
algorithms have a general convergence proof associated uwith —
them, they both have been shoun to provide useful
results(1,5). In the case of the fuzzy K-means algorithm, a
proof of convergence under certain conditions to a local —

minimum of the within-group sum of squared error criterion

exists(5).

. . . S - P S TS Py
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' y
] While both algorithms are useful in determining the -;
“ existence of a set of K clusters in some data sets, the ;—;{
correct choice of K is no straightforward task. Often the :
data must be run for several values of K. Then the results fii
of all runs must be interpreted (usually by hand) to :;;:

determine the number of naturally occurring clusters, if i'

any. One advantage of the fuzzy K-means algorithm is that }i
the interpretation is eased by the availability of the ij:i

membership function array. When the memberships shouw most S
samples with a high membership in only one cluster then this E” ]
suggests the choice for K which produced the results may ;ﬁ‘i
best represent the number of naturally occurring clusters. :s;;
The initialization steps required for these algorithms t%f%
are quite different. For the crisp K-means algorithm a set Zf'l

of K initial cluster centers must be chosen. Usually a F
random assignment will produce good results. Alternatively, t:?“

the fuzzy K-means algorithm requires a little more effort in

order to obtain wuseful results. The initial membership ff
function array can not in general be assigned arbitrarily. ‘ i
e ey
One procedure for initialization of the array is to obtain a :
crisp partition and then "fuzzify" it by changing each
vectors memberships so that they share membership among the l'.
classes with their maximum membership in the class which the S
crisp partition placed them(5). L‘gl
| S
| I
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A great deal of research concerning the fuzzy K-means
algorithm has been conducted. Several individual as well as
joint efforts have been completed by James Bezdek and Joseph
Dunn(5,8,9,10). On the whole, as indicated by their

research results, the fuzzy K-means algorithm is a useful

tool for cluster analysis. Additional results and a
comparison between the fuzzy and crisp algorithms are given

in chapter four.

K-
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FUZZY CLASSIFIERS

3.1 Introduction

While clustering procedures are utilized when the nature
of a set of unlabelled samples is being investigated,
classification routines have a different purpose. Given a
set of unlabelled samples, a classification algorithm should
be able to determine their correct classification. There
are several approaches to the classifier problem, as
discussed in chapter one. In this chapter the nearest

neighbor and nearest prototype classifiers are considered.

Both the nearest neighbor and nearest prototype
classifiers utilize labelled samples and a distance measure
to determine classification. In the case of the nearest
neighbor classifier the labelled samples are used directly.
The nearest prototype <classifier compares the samples of
unknown class to a set of prototypical samples representing

the possible classes.

3.2 Nearest Neighbor Classifiers

PP
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The nearest neighbor classifiers require no preprocessing
of the labelled sample set prior to their use. The crisp
nearest neighbor classification rule assigns an input sample
vector y, of unknown classification, to the class of its
nearest neighbor(l). This idea can be extended to K nearest
neighbors wWith the vector y being assigned to the class
which is represented by a majority amongst the K nearest
neighbors. Of course, when more than one neighbor is
considered the possibility that there will be a tie among
classes which have a maximum number of neighbors in the
group of K nearest neighbors exists. One simple way of
handling this problem is to restrict the possible values of
K. For example, given a two class problem, if we restrict K
to odd values only no tie will be possible. Of course, uhen
more than two classes are possible this technique 1is not
useful. The means of handling the occurrence of a tie is as
follows. The sample vector is assigned to the class, of
those classes which tied, for which the sum of distances
from the sample to each neighbor in the class is a minimum.
Of course, this could still lead to a tie, in which case the
assignment is to the last class encountered amongst those
which tied, an arbitrary assignment. Clearly, there will be
cases where a vector’'s classification becomes an arbitrary
assignment no matter what additional procedures are included

in the algorithm.
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3.2.1 Crisp Nearest Neighbor Algorithm

Let W = {x;,%2.....%X,} be a set of n labelled samples. The

algorithm is as follous.

BEGIN
Input y, of unknown classification
Set K, 1<K<n
Initialize i=1
DO UNTIL(C K nearest neighbors found)
. Compute distance from y to x;
l IF (i € K ) THEN
Include x; in the set of K nearest neighbors
ELSE IF ( x; is closer to y than
any previous nearest neighbor ) THEN
Delete farthest in the set of K nearest neighbors
g Include x; in the set of K nearest neighbors
l END 1IF
Increment i
END DO UNTIL
Determine the majority class represented in the set
of K nearest neighbors
IF (a tie exists ) THEN

Compute sum of distances of neighbors in each

class which tied —
: IF ( no tie occurs ) THEN s
N Classify y in the class of minimum sum ffj
: ELSE ST
. Classify vy in the class of last minimum found P
- END IF rdo.
t ELSE —
. Classify y in the majority class .jj
- END IF T
END __‘-,j;-i
' —

o

"
'J _L‘J.J‘ i -' .
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3.2.2 Fuzzy Nearest Neighbor Classifier

While the fuzzy K-nearest neighbor procedure is also a
classification algorithm the form of its results differ from
the crisp version. The fuzzy K-nearest neighbor algorithm
assigns class membership to a sample vector rather than
assigning the vector to a particular class. The advantage
is that no arbitrary assignments are made by the algorithm.
In addition, the vector's membership values should provide a
level of assurance to accompany the resultant

classification. For example, if a vector is assigned 0.9

membership in one class and 0.05 membership in two other

classes we can be reasonably sure the class of 0.9
membership is the class to which the vector belongs. On the
other hand, if a vector is assigned 0.55 membership in class
one, 0.44 membership in class two, and 0.01 membership in
class three then we should be hesitant to assign the vector
based on these results, although we can feel confident that
it does not belong to class three. In such a case the
vector might be examined further to determine its
classification. Clearly the membership assignments produced
by the algorithm can be wuseful in the classification

process.
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The basis of the algorithm is to assign membership as a
function of the vector's distance from its K nearest
neighbors and those neighbors membership in the possible
classes. The fuzzy algorithm is similar to the crisp
version in the sense that it must also search the labelled
sample set for the K nearest neighbors. Beyond obtaining

these K samples, the procedures differ considerably.

3.2.2.1 Fuzzy Nearest Neighbor Algorithm

Let X= {x3.x2,....,%x,} be the set of n labelled samples.

Also let u;(x) be the assigned membership of the vector x(to

be computed),and uy;y; be the membership in the ith class of

the jth vector of the labelled sample set.

~

BEGIN
Input x, of unknown classification
. Set K, 1£1<n
Initialize i=1 -
DO UNTIL ( K nearest neighbors to x found ) ]
Compute distance from x to x; ]
IF (i € K ) THEN
Include x; in the set of K nearest neighbors
ELSE IF ( x; closer to x than
any previous nearest neighbor ) THEN
Delete the farthest of the K nearest neighbors

—-——

i
3
]
b
S
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Include x; in the set of K nearest neighbors

END IF

END DO UNTIL

Initialize i=1

DO UNTIL ( x assigned membership in all classes )
Compute u; (x) using 3.2.2.1a below
Increment i

END DO UNTIL

END
K
Tu; (170 x=-x;l127¢=-12)
j=1

3.2.2.13 uz(x) =
K
L1/l x=-x31127t™=-1))
j=1

3.2.2.2 Physical Interpretation

The interpretation of the algorithm is given in terms of
the following example. As stated previously, selection of
the K nearest neighbors from the labelled sample set is

straightforward. S0, with K=3 the example proceeds assuming

the 3 nearest neighbors of x are x;, x2, and xj3 . The class

memberships for these three sample vectors are given as:

uss = membership of jth sample in the ith class, j=1,2,3.

-
h

P
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The distances of x from x;, x2, and x3 are d;. ds. and

respectively.

Now according to 3.2.2.1a,

Uil(l/d;)z/.-l + Ufz(l/dz)z’-'l + u;;(l/d;)’-"""

u; (x) =
3
E(1/dy)2/=-1
j=1

Thus, the assigned memberships of x are influenced by the
inverse of the distances from the nearest neighbors and
their class memberships. The inverse distance serves to
weight a vector's membership more if it is closer and less
if farther from the vector under consideration. The
labelled samples can be assigned class memberships in one of
two ways. First, they can be given complete membership in
their known class and non-membership in all other classes.

. The second alternative is to assign the samples membership
based on distance from their class mean or distance from

labelled samples of the other class or classes, and then use

the resulting memberships in the classifier. Both of these

PRI SN S T S —tao 2 — i i : i e e
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techniques have been used in this study and the results are E

reported in chapter four. :;i

;;i

|

3.3 Nearest Prototype Classifiers -y

-

These classifiers bear a marked resemblance to the ;T*Q

l-nearest neighbor classifier. Actually, the only Eli:

difference is that for the nearest prototype classifier the };.3

labelled samples are a set of class prototypes whereas in :4—:

the nearest neighbor classifier we use a set of labelled T
samples which are not necessarily prototypical. Of course,

the nearest prototype classifier could be extended to t:i

multiple prototypes representing each <class, similar to the .
K-nearest neighbor routine. Nevertheless this study

considers only the l-nearest prototype classifier in both a LV

crisp and fuzzy version. The prototypes used for these -

routines are taken as the class means of the labelled sample
. set.

3.3.1 Crisp Nearest Prototype Algorithm
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Let W= {2, Z2;....,2x} be the set of K prototype vectors

representing the K classes.

BEGIN
. Input x, vector to be classified
A Initialize i=l
y DO UNTIL (distance from each prototype to x computed)
Compute distance from Z; to x
5 . Increment i
h END DD UNTIL
! Determine minimum distance to any class prototype
IF ( tie exists ) THEN

3 Classify x as last class found of minimum distance
) ELSE
g Classify x as class of closest prototype
END IF
END

3.3.2 Fuzzy Nearest Prototype Algorithm

As above, let W = {Z,, Zs2.....2x)} be the set of K prototypes

representing the K classes.

BEGIN
Input x, vector to be classified
Initialize i=1
DO UNTIL (distance from each prototype to x computed)
Compute distance from Z; to x —
Increment i SO
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) END DO UNTIL
. Initialize i=1
E DO UNTIL (X assigned membership in all classes)
Compute uy(x) using 3.3.2a below
Increment i
END DO UNTIL
END

Tt
PRED

i 1/l x-xsN27¢==1)
3.3.2a u;(x) =

K
Z(1/Nx-x4sli27¢t=-1))
j=1

The difference between 3.3.2a and 3.2.2.1a is that
membership in each class is assigned based only on the
distance from the class prototype. This 1is because the
prototypes should naturally be assigned complete membership

in the class which they represent.
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CHAPTER 4 S

’-:~“.

RESULTS AND CONCLUSIONS S

4.1 Introduction

s
p -
3
ﬁi —
5 The results presented in this chapter were produced by Los

software implementation of the algorithms presented in
chapters three and four. The software was developed using é;g
Fortran 77 on a Perkin-Elmer 3220. In addition, UMC Core

Graphics support software was utilized ¢to allouw a geometric

interpretation of the two-dimensional clustering and -

classification results.

4.2 Test Data
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Four labelled data sets were wutilized ¢to test the

algorithms. The data sets and their attributes are as )
follous. ‘h}é
. {
U
S
£ Data Set Number of Number of Number of features e
name classes vectors per vector i“j
]
IR1S 3 150 4 1
IRIS23 2 100 4 r*;
THOCLASS 2 2642 4 .
LANDSAT 4 32018 4 o
. . ..!I
.
Lwﬂ
o]
.»"..j.:‘
f;-’j‘?{
-
L —
The IRIS data is that of Anderson(1ll). This particular -
data set has been utilized extensively by researchers in the R
area of cluster analysis since 1936, when R.A. Fisher first ;‘
used it to illustrate ¢the concept of linear discriminant
analysis(5). The data represents three subspecies of
irises, wWwith the four feature measurements being sepal -

length, sepal width, petal length, and petal width, all in
centimeters. There are fifty vectors per class in this data

set. The IRIS23 data set is a subset of the IRIS data. It

et g Py o e PP NPT Y Yy . o - PSR "
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includes classes two and three, the non-separable classes,

of the IRIS data.

The TWOCLASS data set is an artificially generated
normally distributed set of vectors. This data set was
included because classification results from a Bayes
classifier were available to use in the comparison. This

data set contains 121 samples per class.

The third data set is a3 set of images taken by Landsat-2
on April 22, 1981 and August 9, 1981. Features one and two
were produced in April and features three and four in
August. Features one and three were produced by identical
sensor types as were two and four. This data set was used
exclusively in the clustering evaluation. As with the
THOCLASS data, results from a different clustering procedure
ran on this data was available for comparison. For
additional information concerning the data source refer to
(12). The clustering results available were produced by a
statistically oriented algorithm entitled SEARCH which s

also described in (12).

The IRIS data and TWOCLASS data sets were utilized in
evaluation of both the clustering and classification

algorithms.
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sep Bod P

4.3 Clustering Results and Computational Requirements

~R
Doy ot

!
L 4.3.1 Clustering Results

As a basis for comparison the results of the fuzzy
clustering algorithm are reported as a crisp partition
wherein a vector is assigned to the cluster of maximum
membership. Kith these results, shown in Tables 1, 1la, and
lb. a comparison of the crisp and fuzzy algorithms can be
made. The percentages given in the tables indicate the rate
of correct «classification, for individual <classes and

combined results.

The results are presented in the form of confusion
matrices. These matrices are organized as follows. The
count of samples listed in each row are those which belong
to the corresponding class and the count of samples listed
in each column are those placed into the corresponding
cluster. Thus, the rous give the vectors in the
corresponding class and the columns give the resultant

cluster assignments.
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Consider first the results shoun for the IRIS and

THOCLASS data sets. In the case of the TWOCLASS data the

4 results are the same for both crisp and fuzzy clustering.
The results of ¢the two clustering procedures do show a
h difference for the IRIS data, although the difference in

error rate is less than 1X, hardly significant.

Next, examine the results shown for the LANDSAT data.
First of all, the numbers in the results of the SEARCH
procedure differ by a scale factor because they are reported
in terms of acreage whereas the other results are reported
in terms of pixel count. Comparing only the results of the
fuzzy clustering to the crisp clustering it should be clear
that the fuzzy K-means algorithm performed much better than
the crisp version. Actually, the only reason the crisp
algorithm's results show an overall rate of correct
labelling above fifty percent is because the majority of the

sample points are from a single class.

Now, if we compare the results of the fuzzy K-means
algorithm to those of the SEARCH algorithm the following
observations can be made. First of all the overall rate of
ctorrect labelling for SEARCH is higher than that of the
fuzzy results. But, by examining the results of the
individual classes we can see that the fuzzy clustering
routine did better, on the average, for the individual

classes. In addition, while the SEARCH procedure is
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; considered unsupervised clustering, it does involve user
i interpretation of intermediate results( a much larger number
- of clusters), which is then given to the algorithm in terms
of desired cluster combinations so that the final cluster

I count will be as specified, which in this case is four(l12).
)
From the above results it should be clear that the fuzzy

K-means performs as well as, and in some cases better than

the crisp K~means algorithm.

4.3.2 Role of the Weighting Factor

The weighting factor (m) used in the fuzzy algorithms

influences the results of these algorithms in an interesting

manner. The results of the K-means algorithm when m s
varied over a range of values are presented in Tables 2 and 753
2a.
The first thing to notice from the results listed in - i
Table 2 is that the rate of correct classification increases .Eﬁ
without exception for both data sets as the value of m is ' 'ﬂ
increased over the range. In addition, as m is increased f_::
R
T o
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the resulting memberships become "fuzzier", as expected(5).
That is, on the average, the membership assignments given
are closer to 0.5, the region where it would seem the
membership of a vector would be more difficult to
i distinguish. Nevertheless, in the empirical results
presented in Tables 2 and 2a, the "fuzzier" memberships do
not cause the error rate to increase, instead it decreases.
I - While these results are not conclusive, they do show that
the fuzzy K-means algorithm can outperform the crisp K-means

algorithm.

c TR o T

i 4.3.3 Computational Requirements

1
]
- The computational requirements of the crisp and fuzzy ]

i K-means algorith will now be considered. The number of

multiplications and additions are compared in the general

N
K

]
= eprag)
.
<
g

case and for a particular example. The count of
multiplications and additions for each algorithm are

reported in terms of the parameters listed belouw.

K =2 number of cluster specified

coln D

: [',. L
A J S

L
3
L.
]
]
!
|
)
|
:
!
|
;
!
[
L. .




iwi: .

z
w

b=}
1]

Fuzzy

Multiplications KN(3+2n)

Additions

Using the parameter for the

particular example is given.

N = 150

Fuzzy
Multiplications 4950

Additions 6750

Without a doubt there is a

the fuzzy K-means algorithm as

3KN(1+n)
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number of data samples

number of features per sample

Crisp
Kn(2+N)

2Kn(1+N)

IRIS data set, the following

Crisp
1824

3624

trade~-off involved when using

opposed to the crisp K-means
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algorithm. But, the fuzzy K-means algorithm provides more
information, in the form of cluster memberships, than the

crisp K-means algorithm.

4.4 Classifier Results and Computational Requirements

As with fuzzy clustering, results of the fuzzy
classifications are reported in terms of a crisp partition
wherein a sample vector is assigned to the class of maximum
membership. The classifications are obtained using the
"leave one out" technigque. The procedure is to leave one
sample out of the data set and classify it using the
remaining samples as the labelled data set. This technique
is repeated wuntil all samples in the data set have been
classified. In addition, in order to evaluate one technique
used to initialize memberships of the labelled samples used
in the classifier the IRIS23 data set was created by using
only class two and three of the IRIS data set. This was
necessary because the initialization technique will only

work on two class classification problems.
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4.4.1 Results of Nearest Neighbor Classifiers

Before comparing the results produced by the nearest
P neighbor algorithms, the types of labelling techniques used
i . for the fuzzy classifier are explained. Three different
t techniques of membership assignment for the labelled data

are considered. The first method, a crisp labelling, is to

assign each labelled sample complete membership in its known
class and zero membership in all other classes. The second
technique utilized assigns membership based on the procedure
presented in (13). This technique works only on two class
data sets. The procedure assigns a sample membership in its
known class based on its distance from the mean of the
labelled sample class. These memberships range from one to
one-half with an exponential rate of change betueen these
limits. The sample's membership in the other <class is
assigned such that the sum of the memberships of the vector

equals one. A more detailed explanation of ¢this technique

is given in (13). The third method considered assigns

memberships to the labelled samples according to a K-nearest ‘-
rule. The K(not K of the classifier) nearest neighbors to T:j
each sample (x) are found and then membership in the knouwn :

class i is assigned according to the following equation.

SR T - SUC I RPN PN 1 AP SN NPU S IPU A . AP . FORP P U T SNV UL S G W Bl o i




PAGE 46

uy;(x) = 0.51 + (n;/K)*0.49

ﬂ Membership assignments in the remaining classes are
ﬁ according to( C = number of classes),

.

* ' us(x) = (ny/KI%0.49 3§ =1,2,...,C 3#i

The value n; is the number of the neighbors found which
belong to the ith class and the value n; is the number of the

neighbors found which belong to the jth class. This method

attempts to "fuzzify" the memberships of the labelled
samples which are in the class regions which intersect in
the sample space and leave the samples which are uwell auway

from this area with complete membership in the known class.

As a result, an unknown sample lying in this intersecting
region will be influenced to a lesser extent by the labelled
samples which are in the "fuzzy" area of the class boundary. ' i
This initialization technique would work better on the 1
problem of the "cloud within a cloud®”™ discussed in section

2. 3.

Thus, uwith these three initialization techniques three

PRI R Pox]

sets of results of the fuzzy K-nearest neighbor class%fier

——

are produced.
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These results are presented in Tables 3 and 4. Upon
comparison of the results of the crisp classifier and the
fuzzy classifier with crisp initialization we can see that
on the average these procedures have equal error rates. In
addition, the fuzzy classifier which uses the second
initialization technique described produced nearly equal
results. Although not reported in the tables, the results
of this fuzzy classifier using the membership assignment
rule described in (13) did not produce memberships for the
misclassified vectors which suggest they actually belong do
a different class. Instead this second initialization
technique causes an overall reduction in the values of
memberships assigned with most of the samples given majority
memberships less than 0.7. But the nearest neighbor
initialization technique does seem to produce membership
assignments which give an indication of degree of

correctness of classification.

Examining the results given in Table 4 for the K-nearest
neighbor classifier with nearest neighbor sample membership
initialization, the following observations can be made.
First of all, the results shouw a somewhat lower overall
error rate. But, more importantly, the number of
misclassified vectors with high assigned membership in the
wrong class is quite small for certain choices of KINIT. 1In

addition, the correctly classified samples were given
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relatively higher membership in their known class than in

‘ other classes.

As a final comparison, consider the results of the Bayes

classifier for the TWOCLASS data. Running a ten percent
jacknife procedure( Taking ten percent of the samples as
test data and the remaining as training data, classifying
these and then repeating the procedure wuntil all samples
have been used as test samples.) and assuming equal apriori
probabilities for both classes, the Bayes classifier
misclassified twenty of the samples. Clearly, dependent on
the value chosen for K, the fuzzy nearest neighbor

classifier can perform as well as a Bayes classifier.

4.4.2 Nearest Neighbor Computational Requirements

The computational requirements of the crisp and fuzzy
classifiers are now considered. The number of
multiplications and additions required to classify a sample

are considered. The parameters which influence the number

of multiplications and additions required are as follows.

i
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C = number of classes

K = number of neighbors used to classify

; N = number of labelled samples used ]
; n = number of features per sample vector 5
A o
.’ J
= | 4
: 7
Fuzzy Crisp e

Multiplications nN+C(2K+1) nN —

Additions 2nN+K+2CK 2nN+2K+CK+C-1

Using the parameters for the IRIS data set and setting

K=3, the following particular example is given.

z
]

149

n =4 2
.
’-—d

Fuzzy Crisp
Multiplications 617 596

Additions 1213 1209
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5 As this example illustrates, there is 1little difference )
r.
_ in the computational requirements of the c¢risp and fuzzy

g K-nearest neighbor algorithms.

4.6.3 Results of Nearest Prototype Classifiers

The l-nearest prototype classifier in both the crisp and

fuzzy versions are the quickest and simplest of ¢the
classifiers considered. The reason is as followus. In both fﬁé
versions of the l-nearest prototype algorithm, an unknoun

sample is compared to one prototype per class as opposed to

the K-nearest neighbor algorithms wherein an entire set of

labelled samples representing each class must be compared
before the "K"™ nearest are obtained. The results reported
in Table 5 show that the fuzzy nearest prototype classifier i
and the crisp nearest prototype classifier produced e
equivalent results. But, by looking at the memberships of
the misclassified samples in terms of the number with .
membership greater than 0.7 in the wrong class, given in
Table 6, it is clear that these memberships do provide a
useful measure of level of confidence of <classification.

Further, the number of correctly classified samples wuwith

.....................................................
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memberships in the range between 0.5 and 0.7 is small
compared to the number of correctly classified samples.
This means that most of the correctly classified samples
have membership in the correct class greater than 0.7.
Thus, we can be assured based on the memberships assigned

that the samples are correctly classified.

4.4.4 Nearest Prototype Computational Requirements

The computational requirements of the two classifiers are
examined below. The number of multiplications and additions
required for classification of a sample is given in terms of

the parameters defined below.

C = number of classes

n = number of features per vector

Fuzzy Crisp
Multiplications C(2+n) Cn

Additions c(2n+l) 2Cn

N

- od
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As with the previous comparisons, a particular example is

given using the IRIS data.

c=3
n =4
Fuzzy Crisp
Multiplications 18 12
Additions 27 26

As with the nearest neighbor classifiers, there is little
difference in the computational requirements of the crisp

and fuzzy l-nearest prototype classifiers.

6.5 Conclusions

The fuzzy K-means algorithm considered is a viable R

alternative for use in clustering problems. While
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considerable research concerning this algorithm has already
been conducted, the role of the weighting factor has not
been investigated sufficiently. The results reported above
indicate that the effect of using values higher than tuwo for

the weighting factor deserves further investigation.

The fuzzy K-nearest neighbor and fuzzy I-nearest
prototype algorithms developed and investigated in this
report show wuseful results. In particular, concerning the
fuzzy K-nearest neighbor algorithm with fuzzy k-nearest
neighbor labelled sample membership assignments, the
membership assignments produced for classified samples tend
to possess desirable qualities. That s, an incorrectly
classified sample will not have a membership in any class
close to one while a correctly classified sample does
possess a membership in the correct class close to one. The
fuzzy l-nearest prototype classifier, while not producing
error rates as low as the fuzzy nearest neighbor classifier,
also seems to produce membership assignments which are

desirable.

Clearly, the results reported herein indicate that the
fuzzy pattern recognition algorithms considered in ¢this

research are useful and should be further investigated.
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Table 1
CLUSTERING RESULTS - IRIS data
Four Features

Fuzzy K-means Crisp K-means

1 2 3 1 2 3
1l 50 0 0 100% 1 50 0 0 100x
2 0 47 3 94GX% 2 0 %8 2 96X
3 0 13 37 76% 3 0 16 36 72%

Overall correct rate 89. 3X%

Features Three and Four

Fuzzy K-means

1 2 3
1 50 0 0 100%
2 0 49 1 98%
3 0 7 43 86%

Overall correct rate 9%94.7X%

................

Crisp K-means

1 2 3
1 50 0 0 100x
2 0 %8 2 96%
3 0 7 43 86x

Overall correct rate 94.0X

----------
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Table la

CLUSTERING RESULTS - TWOCLASS data

Four Features

Fuzzy K-means Crisp K-means
1 2 1 2
1 114 7 96.2% 1 114 7 964.2%
2 15 106 87.6x% 2 15 106 87.6%
Overall correct rate 90.9% Overall correct rate 90.9%

Features Three and Four

Fuzzy K-means Crisp K-means
1 2 1 2
1 114 7 94.2% 1 114 7 94.2%
2 15 106 87.6% 2 15 106 87.6x%

Overall correct rate 90.9% Overall correct rate 90.9%

.....
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Table 1b

CLUSTERING RESULTS - LANDSAT data(four features)

Fuzzy K-means

1 2 3 4

v Yo v - - -
TN T

1 11151 2951 2728 193 65. 5%

TV
.

P ' 2 3178 5054 723 11  56.6%
3 404 8064 3629 16  73.3%
4 157 43 6413 762  55.4%

Overall correct rate 63.7%

e LM

Crisp K-means

1 2 3 4
1 164267 1463 315 978 83. 3%
2 5904 1575 1309 178 17.5%
3 2370 440 1481 363 31.8%
4 1254 30 38 53 0.3%

Overall correct rate 54. 3%

SEARCH T

1 2 3 4 -

1 9143 1165 230 3 87% Do

bt

2 2088 3503 59 0 62% e
3 380 1158 1409 0 48%
4 38 155 267 368 G4

Overall correct rate 72%
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: Table 2
|
. Result of Varying the Weighting Factor(m)
. Vectors Number of vector's membership in range
misclassified (in class of maximum membership)

> D.6 > 0.7 > 0.8 > 0.9
- ' m T 1 T I T I T I T I
ﬁ 1.6 22 17 18 15 13 14 8 12 6 7
i 1.5 22 17 17 15 11 12 5 9 2 5
N 1.6 22 17 17 14 9 12 6 6 1 1
E; 1.7 22 17 16 14 7 10 2 s 1 ©
> 1.8 22 17 16 13 5 8 2 2 o o
Ei 1.9 22 16 14 13 4 5 1 o o o
E} 2.0 22 16 10 8 4 5 1 o o o
i 2.1 22 16 3 8 2 2 1 o 0o o
Ff 2.2 22 16 s 8 2 0 o © 6 ©
ﬁz 2.3 22 16 8 6 2 0 o o 0 0
Ei 2.4 21 15 7 6 2 0 6 o o o
E; 2.5 21 15 7 4 1 o o o o o
ff 2.6 21 15 6 3 1 0 o o 6 0
%: ) 2.7 21 15 ¢ 1 1 0 0 0 c 0
:f 2.8 21 1% 4 o 1 © o o 6 o
E{ 2.9 20 15 4 0 0 O 6 0 o 0
: 3.0 20 15 4 0 c o 6o o o o
2 Abbreviations: T-TWOCLASS data I-IRIS data
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: Table 2a

. Result of Varying the Weighting Factor(m)

I Vectors Number of vector's membership in range

misclassified (in class of maximum membership)

E > 0.6 > 0.7 > 0.8 > 0.9
m T I T I T I T I T I
3.1 20 15 3 1] 0 0 0 0 0 0
4.0 20 14 1 1] 0 0 1] 0 0 0
6.0 19 13 0 0 0 0 0 0 0 0
7.0 19 13 (1] 1] 0 1] 0 0 0 0
8.0 19 13 1] 0 0 0 0 0 0 0
10.0 19 12 0 0 0 0 0 0 0 0
20.0 19 11 1] 0 0 0 0 0 (1) (1]
30.0 19 11 0 0 0 0 0 1] 0 0

Abbreviations: T-TWOCLASS data I-IRIS data
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Table 3

b Results of K-nearest Neighbor Classifiers

‘ Number of Misclassified vectors
Crisp Fuzzy-(1) Fuzzy-(2) Fuzzy-(3)
K I T I I T Ir T I I T I

1 6 26 6 6 26 6 26 6 6 26 6
2 7 26 7 6 26 6 2l 6 6 21 6
3 6 21 6 6 22 6 21 7 5 19 6
4 5 20 5 6 19 6 20 7 5 20 5
5 5 20 5 5 21 5 20 7 4 19 4
6 6 19 6 5 18 5 20 6 4 20 G
7 5 19 5 5 21 5 18 6 4 19 4
8 7 21 7 6 18 6 20 6 4 20 4
9 6 21 6 4 21 4 18 5 4 18 4

Notation and Abbreviations: K-number of neighbors used
I-IRIS data(four features)
T-TWDOCLASS data(four features)
1'-IRIS23 data(four features)
(1)-crisp initialization
(2)-exponential initialization
{3)-fuzzy 3-nearest neighbor

initialization




Table 4
. Results of Fuzzy K-nearest neighbor classifier,

with fuzzy KINIT-nearest neighbor initialization

KINIT

1 6-3 26-15 6-4 26-17 6-4 26-18 6-5 26-18 6-5 26-18
2 6-64 23-17 6-4 21-13 6-4 23-14¢ 6-6 22-13 6-4¢ 22-11
3 5-4 20-12 65-4 19-12 5-4 21-12 5-5 21-106 6-5 23-10
4 5-4 17-12 5-4 20-11 5-4 19%9-10 5-6¢ 1%9-10 5-4¢ 19-9

5 6-6 16-11 6-4 19-11 5-4 19-10 5-3 20-11 5-3 19-10

6 6-6 20-10 4-4 20-11 4-4 20-11 4-3 21

1
0
£H

[}
W

20-8

7 -3 17-9 4-4 19-10 4-3 20-9 4-3 20-8 4-3 20-8

8 64-3 17-9 6-3 20-9 4-2 20-9 G4-2 20-8 4-2 20-8
9 4-3 18-8 4-3 18-8 4-2 21-8 4-2 21-9 4-2 21-8
Abbreviations: I - IRIS data(four features)

T - TWOCLASS data(four features)

Note 1: Columns give results for the values of KINIT(the
K used to initialize the labelled samples
memberships) shown. Rows give results for values
of K in the K-nearest neighbor algorithm

Note 2: Table entries are interpreted as: X-Y indicates
X misclassified vectors with Y of the X given
membership in the wrong class greater than 0.7..

o
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.t Table 5

Results of the 1-Nearest Prototype Classifier o
IRIS data |

Four Features

Crisp Fuzzy [ §

1 2 3 1 2 3

2 0 45 5 2 0 45 5 -

Features Three and Four

Crisp Fuzzy

1 2 3 1 2 3 L

LI RTRE R T
. soa e

TWOCLASS data
Four Features Features Three and Four ‘;;
Crisp Fuzzy Crisp Fuzzy o
1 2 1 2 1 2 1 2 e
1 113 8 1113 8 1 113 8 1 113 8 i;;

2 12 109 2 12 109 2 12 109 2 12 109
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Table 6

Fuzzy Classifier Membership Assignments

IRIS data TWOCLASS data

A B A B
Misclassified samples with 1 1 3 3
membership assigned > 0.7
Samples with membership 15 15 36 36
assigned > 0.5 and < 0.7
Abbreviations: A - Four feature used

B - Features three and four used

Note: The first row in the table above gives the
number of misclassified vectors in the
indicated range and the second rouw gives
the number of all classified samples in the
given range. The intent is to illustrate
that very few samples are misclassified
with high membership, while very few
correctly classified samples are given
membership in their class in the "fuzzy"
region betuween 0.5 and 0.7.
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APPENDIX A

PROGRAM LISTINGS

This appendix includes the documented source code which
was implemented for the research.
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SOPTIMIZE

A DRIVER ROUTINE WHICH ALLOWS SELECTION OF ONE OF THREE
DATA SETS, AND THEN SELECTION OF ONE OF SEVEN PATTERN
RECOGNITION ALGORITHMS TO BE RAN ON THE DATA SET
CHOSEN. AFTER THE CHOSEN ALGORITHM HAS COMPLETED

THE USER IS PROMPTED FOR CHOICES OF INTERPRETIVE
ALGORITHMS TO RUN USING RESULTS PRODUCED BY

THE PATTERN RECOGNITION ALGORITHM CHOSEN.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: JUNE 84

FILENAME: MGFUZZY.FTN

CALLING SEQUENCE: RUN MGFUZZY
DATA FILES AVAILABLE:

IRIS.DAT - 150 SAMPLES WITH FOUR FEATURES PER SAMPLE,
50 SAMPLES PER CLASS

TWOCLASS.DAT - 242 SAMPLES WITH FOUR FEATURES PER
SAMPLE, 141 SAMPLES PER CLASS

IRIS23.DAT - 100 SAMPLES WITH FOUR FEATURES PER SAMPLE,
50 SAMPLES PER CLASS( A SUBSET OF IRIS.DAT)

PATTERN RECOGNITON SUBROUTINES AVAILABLE ( BY TYPE ):

DESCRIPTION FILENAME
1 ~ CRISP K-MEANS CRSKMEAN.FTN
2 - FUZZY K-MEANS FUZKMEAN.FTN
3 ~ FUZZY K-NEAREST NEIGHBOR FUZNEARN.FTN
4 - FUZZY 1-NEAREST PROTOTYPE FUZPROTO.FTN
5 = FUZZY K-NEAREST NEIGHBOR; FUZNEARN.FTN
FUZZY INITIALIZATION
A = VIA "FZIFY" ; MGFZIFY.FTN
DEVELOPED BY D. HUNT
B - VIA "FZFYNN"; MGFZFYNN.FTHN
A NEAREST NEIGHBOR TECHNIQUE
6 - CRISP K-NEAREST NEIGHBOR CRSIPNN.FTN
7 - CRISP 1-NEAREST NEIGHBOR CRISPNP.FTN

NOTE: CLASSIFIER ALGORITHMS (3 THROUGH 7) USE
THE "™LEAVE ONE OUT™ METHOD TO PRODUCE A
CLASSIFICATION. THE METHOD IS SIMPLY TO
LEAVE THE CURRENT SAMPLE BEING CLASSIFIED
OUT OF THE LABELLED SEY USED TO
DETERMINE CLASSIFICATION.

INTERPRETATIVE SUBROUTINES AVAILABLE:
DESCRIPTION FILENAME

1 - COMPUTE HARD PARTITION USING MGCMTRIX.FTN
MAXIMUM CLASS MEMBERSHIP,
RESULT IS5 A CONFUSION MATRIX
2 = OUTPUT THE MEMBERSHIP FUNCTIONS, MGMEMBPR.FTN
A - FOR ALL SAMPLES OF DATA SET
B - FOR ONLY THE MISCLASSIFIED
SAMPLES OF DATA SET
3 - COMPUTE LEVEL SETS USING ALPHA MGCUTSET.FTN
AND BETA AS UPPER AND LOWER
CUTOFFS, RESPECTIVELY. BASICALLY,
A LEVEL SET IS DEFINED TO INCLUDE
THOSE SAMPLES WHICH HAVE MEMBERSHIP
IN THE DESIRED RANGE, EITHER GREATER
THAN ALPHA, LESS THAN BEAT, OR IN-
BETWEEN ALPHA AND BETA
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4 - OUTPUT A 2-D PLOT OF RESULTS, MGDOPLOT.FTN
A - RESULTANT CLASSIFICATION OF
EACH SAMPLE BY CLASS
B - MEMBERSHIP FUNCTIONS ASSIGNED
IN ONE CLASS
C - SAMPLES WHICH ARE A LEVEL SET
FOR A GIVEN CLASS

ccceeececcccccceccceccceccececcececcccccccccccccececcccccccecceece
LOGICAL UNITS USED:

11 - T0 ACCESS A DATA FILE, OPEN ONLY WHEN h—
ACCESSING THE DATA SET AND THEN NO C
LONGER USED UNTIL ANOTHER DATA FILE I
IS SELECTED

5 - USED TO READ AND WRITE TO CONSOLE,
ALUWAYS ASSIGNED

6 - USED TO WRITE TO HARD COPY PRINTER, i
ALWAYS ASSIGNED, THOUGH ONLY USED .-
WHEN USER SELECTS THE PRINTER AS -
THE OUTPUT DEVICE

cccceeecceeecccceeececccceceececccccccceccececceececccecccceccecece

FINAL NOTE: USER INTERACTION IS REQUIRED AT -
VARIOUS INTERVALS. AFTER A PARTICULAR -
PATTERN RECOGNITION ALGORITHM IS CHOSEN ok,
NO FURTHER INTERACTION IS REQUIRED OTHER ot
THAN TO CHOOSE THE VALUE FOR "K"™ IF A T
NEAREST NEIGHBOR ALGORITHM, OR CHOOSE THE g
TYPE OF "FUZZY™ INITIALIZATION IF SO CHOSEN
UNTIL THE ALGORITHM HAS COMPLETED AND
INTERPRETIVE OPTIONS BECOME AVAILABLE.

cceececcccceccececcecceececceccececcccececcecceeccecceccccccccececccecce -

OO0 OOOOOOON

LOGICAL DONE
CHARACTER»*2 REPLY
CHARACTERX15 VFORMT,DFILE
REAL MFUNCT(3,242),PROTO(4,3),X(4,242) S
REAL NMFUNC(3,242),L0W -
INTEGER VECSIZ,VCOUNT,FFEAT,CLASS,VECTOR,CHOICE -—
INTEGER FETUR,CHSIZE,VCLASS(3),TEST1,START(3)
INTEGER ACOUNT(3),BCOUNT(3),ICOUNT(3),0PTION,POINTR
INTEGER WRNCNT,KFINIT,FUZCH,VECREC,COUNT, END(3) DA
INTEGER¥2 KALPHA(3,242),KBETA(3,242),BETWEN(3,242) IR
INTEGER¥2 WRONG(242) R
COMMON /AREAL1/X /AREA2/PROTO /AREA3I/MFUNCT -
COMMON /AREA4/WRNCNT,WRONG ’
COMMON /AREAS/NMFUNC /AREA6/START,END ——
COMMON /AREAB/ACOUNT,BCOUNT, ICOUNT,KALPHA, oo
1 KBETA, BETWEN e

*#%¥% EXECUTION BEGINS xx

LOOP(Until user is finished) -
CONTINUE -

FIND OUT WHICH DATA SET TO USE -

WRITE(S,2)

FORMAT(//,' Enter code for data saet to use:’,
//7:5%,"'1-1IRIS data-150 vectors: 3 classes-’
'4 features',//,5X%,'2-TWOCLASS data-242"
' vectors: 2 classes-%¢ featuras',//5X,
'3~IRIS23 data-100 vectors: 2 classes-’ -—
'4 features',/,7X,'(This file contains’ R
* classes two and thraee of IRIS)*)

READ(5,6) CHOICE

6 FORMAT(I1)
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DO CASE(CHOICE)
GO TO (10,15,20) CHOICE

CASE #1

0 CONTINUE
DFILE="IRIS.DAT’
VFORMT="(20F3.1)°
GO 10 30
END CASE #1

CASE #2
5 CONTINUE
- DFILE="TWOCLASS .DAT"
s . VFORMT="'(4F10.6)"
G0 T0 30
END CASE #2

CASE #3
0 CONTINUE
' DFILE="IRIS23.DAT’
VFORMT="'(20F3.1)"
G0 70 30
END CASE #3

CONTINUE
END DO CASE

OPEN DATA FILE AND READ IN NUMBER OF CLASSES,
SIZE OF DATA VECTORS, NUMBER OF VECTORS PER
RECORD, AND NUMBER OF VECTORS PER CLASS.

OPEN(11,FILE=DFILE)

READ(11,31) KLASES,VECSIZ,VECREC
FORMAT(3I3)
READ(11,31) (VCLASS(I),I=1,KLASES)

VCOUNT=0

DO UNTIL(REMAINING DATA SET DEPENDENT
VARIABLES INITIALIZED)
DO 32 CLASS=1,KLASES

VCOUNT=VCOUNT+VCLASS(CLASS)
END(CLASS)=VCOUNT
START(CLASS)=END(CLASS)-VCLASS(CLASS)+1

CONTINUE
END DO UNTIL

READ DATA VECTORS FROM DISK FILE,
THEN CLOSE THE DATA FILE

DO UNTIL(DATA VECTORS READ)
DO 33 I=1,VCOUNT,VECREC
READ(11,VFORMT) ((X(J,L),J=1,VECSIZ),
I L=I,I+VECREC-1)
CONTINUE
END DO UNTIL

CLOSE(11)

LOOPCUNTIL ANOTHER DATA SET IS DESIRED)
CONTINUE

NOOO =00 OO0 OO0

t.: O OOOOOOLON

O OO0

N

OOOOOOWUOD

(7}

ry

LET USER KNOW HOW MANY FEATURES ARE AVAILABLE

WRITE(5,35) VECSIZ .
35 FORMAT(/,4X,'There are',12,' featuraes in each ' e
1 "vector.’) Ve
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C SET FIRST FEATURE AND LAST FEATURE TO BE CONSIDERED
c WHEN COMPUTING MEMBERSHIP FUNCTION ARRAY.
WRITE(5,40)
40 FORMAT(//,' Input first feature number in vectors’
1 *to use(Il).’)
READ(5,%) FFEAT
WRITE(5,45)
45 FORMAT(//,' Input last feature number in vectors’
1 "to use(Il).’)
READ(5,%) LFEAT

L.
,
L
5

C

g INPUT VALUE OF "FUZZIFIER™ TO BE USED IN ALGORITHM
WRITE(5,50)

50 FORMAT(’1’," Input valua of weighting factor’

1 "("FUZZIFIER"):")
READ(5,55) FZFIER
FORMAT(F3.1)

TEST IF VALUE OF "FUZZIFIER™ IN PROPER RANGE
(ONLY ALLOW > 1.3)

. IFC.NOT.(FZFIER.LT.1.3))G0O TO 60
-. FZFIER=1.3

- END IF

CONTINUE

SET MAXIMUM MEMBERSHIP UPDATE ERROR ALLOMWED
IN FUZZY K-MEANS ALGORITHM

EPSLON=0.001
FIND OUT WHAT TO DO

WRITE(5,65)
65 FORMAT(//,' Enter coda for your choice:',
//7,5X,'1 - crisp K-means’,
//+:5%X,'2 - fuzzy K-means’,
//7:5%X,'3 - fuzzy K-nearest neighbor’,
/7/7,5%X,'4% - fuzzy l-nearaest prototype’,
/7,5%,'5 - fuzzy K-nearest neighbor,’
' fuzzy initialization',
//:5%,'6 ~ crisp K-nearest neighbor’
/7/:5%,'7T - crisp l-nearest prototype’)
READ(5,6) CHOICE
GO T0 (90,95,100,100,100,100,100) CHOICE

CASE #1
0 CONTINUE

INITIALIZE MEMBERSHIP FUNCTIONS.
THEN RUN CRISP K-MEANS ALGORITHM

HIGH=1.0

LOW=0.0

CALL INITMF(VCOUNT,FFEAT,LFEAT,KLASES,HIGH,LOW)
CALL CRMEAN(K%?EE?;!COUNT.FFEAT.LFEAT.EPSLON.

GO TO 400
END CASE #1

CASE #2
5 CONTINUE

HIGH=0.98
LOW=0.02
CALL INITMF(VCOUNT,FFEAT,LFEAT,KLASES,HIGH, LOW) .
CALL FKMEANCFZFIER,KLASES,FFEAT,LFEAT,VCOUNT,
1 EPSLON, ITERAT)
GO TO 400
c END CASE #2
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CASES #3,4,5%6
CONTINUE
IF((CHOICE.EQ.S).OR.(CHDICE.EQ.S).OR

CHOICE.EQ.6)) THEN
WRITEC5,105)

FORMAT(/," Input number of neighbors used to °
'‘assign membership function values(<10):")
READ(5,6) K
IF(CHOICE.EQ.5) THEN
WRITE(S5,106)
FORMAT(/, "' Input number of neighbors used to'
' fuzzify memberships of labelled set(<10):')
READ(5,6) KFINIT
WRITE(5,107)
FORMAT(/,*' Entaer choice of fuzzifying:',//,
' 1 - Fuzzifying per nearest neighbor(s)’
'technique’',//,' 2 - Fuzzifying per D.°
*HUNT technique(two class sets only)’)
READ(5,6) FUZCH
END IF

END IF
IF((CHOICE.NE.%).AND.(CHOICE.NE.7)) THEN
INITIALIZE THE MEMBERSHIP FUNCTIONS

DO UNTILC(ALL MEMBERSHIP FUNCTIONS SET TO ZERO)
DO 115 CLASS=1,KLASES
DO 110 VECTOR=1,VCOUNT
MFUNCT(CLASS,VECTOR)=0.0
CONTINUE
CONTINUE
END DO UNTIL

DO UNTILCALL DATA ASSIGNED COMPLETE
MEMBERSHIP IN THEIR CLASS)
DO 125 CLASS=1,KLASES
DO 120 VECTOR=START(CLASS),END(CLASS)
MFUNCT(CLASS,VECTOR)=1.0
CONTINUE
CONTINUE
END DO UNTIL

END IF

SET FIRST VECTOR IN DATA SET AS THE
FIRST TEST VECTOR

DO UNTIL(TRAINING PROCEDURE COMPLETED)
DO 300 TEST1=1,VCOUNT

IF((CHOICE.EQ.3).0R.(CHOICE.EQ.5)) THEN
IF(CHOICE.EQ.5) THEN
IF(FUZCH.EQ.2) THEN
CALL FUZFY(FZFIER,FFEAT,LFEAT,VCOUNT)

ELSE
CALL FZFYNNCFZFIER,KLASES,VCOUNT, FFEAT,

LFEAT,KFINIT,TEST1)
END IF
END IF
CALL FUZNN(FZFIER,KLASES,FFEAT,LFEAT,VCOUNT,

K,TESTY)
ELSE IF((CHOICE.EQ.4).0R.(CHOICE.EQ.7)) THEN

DO UNTIL(PROTOTYPES FOUND FOR ALL CLASSES)
DO 230 CLASS=1,KLASES

DO UNTIL(PROTOTYPE VECTOR FOR CURRENT
CLASS ZEROED)
DO 205 FETUR=FFEAT,LFEAT
PROTOCFETUR,CLASS)=0.0
CONTINUE
END DO UNTIL
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c
c DO UNTIL(PROTOTYPE FOR CURRENT CLASS SUMMED)
DO 220 VECTOR=START(CLASS),ENDC(CLASS)
IF(VECTOR.NE.TEST1) THEN
DO 210 FETUR=FFEAT,LFEAT
PROTOCFETUR,CLASS)=PROTOCFETUR,CLASS)
1 +X(FETUR, VECTOR)
210 CONTINUE
END IF
220 CONTINUE
g END DO UNTIL
IFC(TEST1.GE.START(CLASS)).AND.
1 (TESTY1.LE.END(CLASS))) THEN
' COUNT=VCLASS(CLASS)-1
N . ELSE
3 COUNT=VCLASS(CLASS)
3 ¢ END IF
- . c DO UNTIL(PROTOTYPE DIVIDED BY COUNT
c OF TRAINING SET)
DO 225 FETUR=FFEAT,LFEAT
PROTO(FETUR,CLASS)=PROTO(FETUR,CLASS)/
. 1 COUNT
225 CONTINUE
g END DO UNTIL
230 CONTINUE
g END DO UNTIL
IF(CHOICE.EQ.4) THEN
ELgéLL FPROTO(FZFIER,KLASES, FFEAY,LFEAT,TEST1)
ENgA%% CRSPNP(KLASES, FFEAT,LFEAT,TESTL)
ELSE IF(CHOICE.EQ.6) THEN
CALL CRSPNN(KLASES,FFEAT,LFEAT,K,VCOUNT,TEST1)
c END IF
300 CONTINUE
c END DO UNTIL
GO 70 400
8 END CASE # 3, 4, 5, 6 & 7
400 CONTINUE
g END DO CASE
g %%x¥ OUTPUT AND INTERPRET RESULTS
WRITE(5,500)

500 FORMATC//,' Where would you like results sent?’
1’ Enter choice:’,
2 //,5X,'5 - CONSOLE’,
3 //,5%,'6 - PRINTER")
READ(5,506) LU
206 FORMAT(I1)

WRITE(LU,507) DFILE,K,KFINIT
507 FORMAT(' *,* Data set: ',A20,"' K=°,I13, KFINIT=",1I3)

IF((CHOICE.EQ.3).0R.(CHOICE.EQ.5).0R.
1 (CHOICE.EQ.6)) THEN
WRITE(LU,508) K

508 FORMAT(®* *',' Number of naeighbors used = °,I3)
IFC((CHOICE.EQ.5).AND.(FUZCH.EQ.1)) THEN
WRITE(LU,509) KFINIT

509 FORMAT(C' *,'Number of neighbors used
1'for tnitialization = ',13) L
END IF - fj

END IF
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IF(C(CHOICE.EQ.1).0R.(CHOICE.EQ.2)) THEN

Cc
g OUTPUT "EPSLON™, AND NUMBER OF ITERATIONS REQUIRED
WRITE(LYU,602) EPSLON,ITERAT

602 FORMAT(* °,'EPSLON (maximum update error allouwed’

c 1) = ",F7.5," .",13,"' iterations required.’

c END IF

c IF((CHOICE.GE.2).AND.(CHOICE.LE.5)) THEN

C OQUTPUT FUZZIFIER
3 WRITE(LU,603) FZFIER
> . 603 FORMAT(C® °,° The weighting factor("FUZZIFIER"™) is:*
. | »F6.3, ")

END IF

IF(CCHOICE.NE.3).AND.(CHOICE.NE.5).AND.
1 (CHOICE.NE.6)) THEN

OUTPUT THE FINAL CLUSTER CENTERS

DO 615 INDEX=1,KLASES
WRITE(LY,612) INDEX, (PROTO(I,INDEX),
1 I=FFEAT, LFEAT)
612 FORMAT(/,1X, 'Waeighted mean for class #’',
1 12, :',12F6.3)
615 CONTINUE

END IF

QUTPUT A CONFUSION MATRIX AND FIND THE INDICES
OF MISCLASSIFIED VECTORS

CALL CMTRIX(KLASES,YCOUNT,LU,CHOICE)
IF((CHOICE.GE.2).AND.(CHOICE.LE.5)) THEN
QUTPUT THE MEMBERSHIP FUNCTION ARRAY COMPUTED
WRITE(5,669)
669 FORMAT(/,"* Enter option:',//,
1 5X,'1 - Output entire membership function °
2 'array',//,5X,'2 - Output only thae misclassified’
3 ‘vector™s membership functions')
READ(5,506) OPTION
CALL MEMBPR(KLASES,VCOUNT,LU,CHOICE,OPTION)
END IF

LOOP(UNTIL USER FINISHED)
70 CONTINUE

WRITE(5,969) '1Q
969 FORMAT(/,’ Do you want to find thae ALPHA and’ R
C

OO0

OO0 O OO0

OROO O O

1°BETA cutsaets?(Y/N)*)
. READ(5,996) REPLY :
IF(REPLY.EQ.'Y’) THEN C——

HRITE(5.971) T
971 FORMAT(’® ', 'Input "ALPHA", upper membership’ R
1 ' cut-off:’) AR
READ(5,972) ALPHA S
972 FORMAT(F6 3)
WRITE(5,973)
973 FORMAT(' ', 'Input "BETA", lowaer non-mambership’
1 ' cut-off:’)
READ(5,972) BETA

NP
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3 CALL CUTSET(ALPHA,BETA,KLASES,VCOUNT,CHOICE,LU)

c
c END IF
WRITE(S,995)
995 FORMAT(/," Do you want a plot of results?(Y/N)')
READ(5,996) REPLY
396 FORMAT(AL)
- IF(REPLY.EQ.'Y") THEN
> - CALL DOPLOT(KLASES,VCOUNT,START,END,LFEAT,CHOICE)
5 c END IF
WRITE(5,997)
997 FORMAT(/,' Do you want another plot or cutset’
b 1 *2(Y/N) ")
. READ(5,996) REPLY
L IF(REPLY.EQ.'Y*)G0 TO 670
s g END LOOP

WRITE(5,998)
998 FORMAT(//,' Do vou want to run another algorithm’
1' using the same data set?2(Y/N)')
READ(5,996) REPLY
IF(REPLY.EQ.'Y*)GO TO 34
WRITE(5,999)
999 FORMAT(//,' Do you uwant to get a different’
1'data set?(Y/N)")
READ(5,996) REPLY
IF(REPLY.EQ.°Y*)GO TO 1

g END LOOP
STOP
END




SOPTIMIZE

A SUBROUTINE WHICH IMPLEMENTS THE FUZZY K-MEANS
ALGORITHM( ALSO REFERRED TO AS THE Fuzzy
ISODATA ALGORITHM).
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WRITTEN BY: MICHAEL R. GRAY
COMPLETED: MAR 1984
FILENAME: FUZKMEAN.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
FKMEANCFZFIER,KLASES, FFEAT,LFEAT,VCOUNT, EPSLON, ITERAT)

INPUT VARIABLES(NOT CHANGED):

FZFIER -~ REAL VALUE FOR THE WEIGHTING FACTOR(M)
USED BY FUZZY K-MEANS

KLASES -~ INTEGER COUNT OF NUMBER OF CLUSTER DESIRED

FFEAT - INTEGER WHICH SETS FIRST FEATURE IN
DATA SET TO CONSIDER

LFEAT - INTEGER WHICH SETS LAST FEATURE IN
DATA SET TO CONSIDER

VCOUNT ~ INTEGER COUNT OF SAMPLES IN DATA SET

EPSLON -~ REAL VALUE WHICH SETS THE MAXIMUM UPDATE
ERROR ALLOWED IN ANY MEMBERSHIP
ASSIGNMENT BEFORE COMPLETION

X = REAL ARRAY 4 BY 242 WHICH HOLDS THE DATA SAMPLES.
PASSES IN LABELLED FORTRAN COMMON "AREAl"™

CUTPUT VARIABLES PRODUCED:

PROTO - REAL ARRAY 4 BY 3 WHICH HOLDS THE Fuzzy
CLUSTER CENTERS PRODUCED, PASSED
IN LABELLED FORTRAN COMMOM “AREA2"

MFUNCT ~ REAL ARRAY 3 BY 2642 WHICH HOLDS THE
MEMBERSHIP FUNCTION ASSIGNMENTS PRODUCED,
PASSED IN LABELLED FORTRAN COMMON ™AREA3"™

ITERAT ~ INTEGER WHICH HOLDS THE NUMBER OF
ITERATIONS REQUIRED

ccccececcecceeccecececccceccccccccccececccccececccecccccccceccecee

PSEUDO - CODE SOLUTION

ENTER FUZKMEAN
SET MAXIMUM NUMBER OF ITERATIONS ALLOWED
INITIALIZE ITERATIONS T0 0
DO UNTIL(MEMBERSHIP FUNCTIONS ASSIGNED STABILIZE
(UPDATE ERROR OF ANY MEMBERSHIP
ASSIGHMENT < EPSILON OR MAXIMUM
NUMBER OF ITERATIONS COMPLETE)
COMPUTE FUZZY CLUSTER CENTERS BASED ON
MEMBERSHIP ARRAY INITIALIZATION
SET VECTOR INDEX=1
DO UNTIL(ALL DATA VECTORS ASSIGNED
MEMBERSHIP FUNCTIONS)
COMPUTE DISTANCES FROM EACH FUZZY CLUSTER
CENTER TO CURRENT DATA VECTOR
ASSIGN DATA VECTOR MEMBERSHIPS IN ALL CLASSES
AS A FUNCTION OF DISTANCE FROM FUZZY CLUSTER
CENTER OF THE CLASS, KEEPING TRACK OF MAXIMUM
UPDATE DIFFERENCE FOR ALL MEMBERSHIP ASSIGNMENTS
INCREMENT VECTOR INDEX
END DO UNTIL
INCREMENT ITERATION COUNT
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C END DO UNTIL
€ RETURN
gececceeceecccceeeececoeceeececeeeeeecceeceeeececeeeeeeeceee -
SUBROUTINE FKMEAN(FZFIER,KLASES,FFEAT,LFEAT, '
o ! VCOUNT, EPSLON, ITERAT) _

LOGICAL MATCH o

REAL MFUNCT(3,2642),X(4,262),NEWMF,PROTO(4,3),XDIST(3)
: INTEGER FFEAT,LFEAT,CLASS,VECTOR,FETUR, VCOUNT

i COMMON /AREA1/X /AREA2/PROTO /AREA3/MFUNCT

%% INITIALIZE %% !
SET MAXIMUM ITERATIONS
MAXITR=50
SET ITERATION TO ZERO INITIALLY
ITERAT=0
COMPUTE POWER WHICH IS A FUNCTION OF THE "FUZZIFIER"™
POWER=1.0/(FZFIER-1.0)
¥x% BEGIN ITERATIONS %xx
DO UNTIL(MAXIMUM DIFFERENCE IN MEMBERSHIP b
FUNCTION UPDAYES LESS THAN EPSLON
OR MAXIMUM ITERATIONS PERFORMED)
CONTINUE
COMPUTE WEIGHTED MEANS

DO UNTILC(WEIGHTED MEAN FOR EACH CLASS COMPUTED)
DO 7 CLASS=1,KLASES

DO UNTIL(MEAN VECTOR # "CLASS™ ZEROED)

DO 2 FETURSFFEAT,LFEAT
PROTOCFETUR,CLASS)=0.0

CONTINUE

END DO UNTIL

DENOM=0.0

DO UNTILCALL VECTORS OF CLASS "TCLASS™ INCLUDED)
DO 4 VECTOR=1,VCOUNT

FUZZED=MFUNCT(CLASS, VECTOR)¥%FZFIER
DENOM=DENOM+FUZZED

DO UNTILC(VECTOR NUMBER "VECTOR™ INCLUDED) L.
DO 3 FETUR=FFEAT,LFEAT :
PROTO(FETUR,CLASS)=PROTOCFETUR,CLASS) +
1 X(FETUR, VECTOR)*FUZZED
CONTINUE
END DO UNTIL

CONTINUE .
END DO UNTIL e

DO UNTIL(MEAN VECTOR DIVIDED BY "DENOM™)

DO 6 FETUR=FFEAT,LFEAT
PROTOCFETUR,CLASS)=PROTO(FETUR,CLASS)/DENOM

CONTINUE

CONTINUE
END DO UNTIL L.

DIFMAX=0.0
DO UNTIL(MEMBERSHIP FUNCTIONS UPDATED AND
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MAXIMUM OLD TO NEW MEMBERSHIP
FUNCTION DIFFERENCE FOUND FOR
ALL MEMBERSHIP FUNCTIONS)

DO 14 VECTOR=1,VCOUNT

l MATCH=.FALSE.
. DSUM=0.0
N CLASS=1

DO UNTILC(VECTOR "VECTOR™ COMPARED TO ALL
MEANS OR MATCH FOUND)
CONTINUE

COMPUTE DISTANCE ~ VECTOR NUMBER "VECTOR"™
TO0 MEAN NUMBER "CLASS"™

XDIST(CLASS)=0.0

: DO UNTIL(DISTANCE SQUARED COMPUTED)

c - DO 9 FETUR=FFEAT,LFEAT

l TEMP=X(FETUR,VECTOR)-PROTO(FETUR, CLASS)
XDIST(CLASS)=XDIST(CLASS)+TEMPX*TEMP

CONTINUE

END DO UNTIL

= IF(XDIST(CLASS).EQ.0.0) THEN

N MATCH=_,TRUE.

” ELI;ICLASS =CLASS

7 XDIST(CLASS)=1.0/XDIST(CLASS)**POWER
EN35¥2=DSUM+XDIST(CLASS)

CLASS=CLASS+1

IFCC.NOT.MATCH) .AND.(CLASS.LE.KLASES))GO TO 8
END DO UNTIL

IF(.NOT.MATCH) THEN
DO UNTIL(NEW MEMBERSHIP FUNCTIONS ASSIGNED,
AND MAXIMUM OLD TO NEW MEMBERSHIP
FUNCTION DIFFERENCE FOUND FOR
CURRENT VECTOR)
DO 10 CLASS=1,KLASES
NEWMF=XDIST(CLASS)/DSUM
DIFF=ABS (NEWMF-MFUNCT(CLASS,VECTOR))
MFUNCT (CLASS, VECTOR)=NEWMF

FIND MAXIMUM OF ALL DIFFERENCES IN OLD T0
TO NEW MEMBERSHIP FUNCTIONS

IF(DIFF.GT.DIFMAX) THEN
DIFMAX=DIFF
END IF

CONTINUE
END DO UNTIL

ELSE

DO UNTIL(NEW MEMBERSHIP FUNCTIONS ASSIGNED,
AND MAXIMUM OLD TO NEW MEMBERSHIP
FUNCTION DIFFERENCE FOUND FOR
CURRENT VECTOR)

DO 11 CLASS=1,KLASES

IF(CLASS.EQ.MCLASS) THEN
NEWMF=1.0

EL:ENMF 0.0

END IF ]

DIFF=ABS(NEWMF~MFUNCT(CLASS,VECTOR))

MFUNCT(CLASS, VECTOR ) =NEWMF

O OO0
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C FIND MAXIMUM OF ALL DIFFERENCES IN OLD
g TO NEW MEMBERSHIP FUNCTIONS

IF(DIFF.GT.DIFMAX) THEN
DIFMAX=DIFF
END IF
CONTINUE
END DO UNTIL
END IF

CONTINUE
END DO UNTIL

INCREMENT ITERATION COUNT
ITERAT=ITERAT+1

: IFCCDIFMAX.GT.EPSLON) . AND.
% - 1 (ITERAT.LE.MAXITR))GO 7O 1

-

[z ] OOOO:O (2 1ad2)

END DO UNTIL

5 RETURN
iy END

o0
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SOPTIMIZE

A SUBROUTINE WHICH IMPLEMENTS THE HARD K-MEANS
ALGORITHM USING MEMBERSHIP FUNCTIONSC =0,1 )
INSTEAD OF CLUSTER ASSIGNMENT.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: MAY 1984
FILENAME: CRSKMEAN.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
CKMEANCKLASES, VCOUNT, FFEAT, LFEAT, EPSLON, ITERAT)

INPUT VARIABLES(NOT CHANGED):

KLASES - INTEGER COUNT OF CLASSES,
OR CLUSTERS TO PRODUCE

VCOUNT - INTEGER COUNT OF SAMPLE VECTOR IN DATA SET

FFEAT - INTEGER WHICH SETS FIRST FEATURE IN DATA
VECTORS TO CONSIDER

LFEAT - INTEGER WHICH SETS LAST FEATURE IN DATA
VECTORS TO CONSIDER

EPSLON - REAL VALUE WHICH SETS MAXIMUM ERROR
ALLOWED IN CLUSTER UPDATE BEFORE
STOPPING ITERATIONS

X = REAL ARRAY ¢ BY 242 WHICH HOLDS THE DATA SAMPLES,
PASSES IN LABELLED FORTRAN COMMON BLOCK “AREAL"™

QUTPUT VARIABLES PRODUCED:

PROTO ~ REAL ARRAY 4 BY 3 WHICH HOLDS THE CLUSTER
CENTERS PRODUCED, PASSED IN LABELLED
FORTRAN COMMON BLOCK "AREA2"

MFUNCT - REAL ARRAY 3 BY 262 WHICH HOLDS THE
MEMBERSHIP FUNCTION ASSIGNMENTS(0 OR 1)
PASSED IN LABELLED FORTRAN
COMMON BLOCK "AREA3"™

ITERAT - INTEGER WHICH HOLDS THE NUMBER
OF ITERATIONS REQUIRED

CCCCCCCeCCcececeeeccecccccccecccccceccceccceccecccccccccccce
PSEUDO - CODE SOLUTION

ENTER CRMEAN
SET MAXIMUM NUMBER OF ITERATIONS ALLOWED
COMPUTE INITIAL CLUSTER MEAN
INITIALIZE ITERATIONS TO 0
DO UNTILC(CLUSTER MEANS STABILIZE(UPDATE ERROR
< EPSILON OR MAXIMUM NUMBER
OF ITERATIONS COMPLETE)
SET VECTOR INDEX=1
DO UNTILCALL VECTORS IN DATA SET ASSIGNED
TO CLUSTER OF CLOSEST MEAN)
SET CLUSTER-MEAN INDEX=1
DO UNTILC(CLOSEST CLUSTER MEAN TO
CURRENT VECTOR FOUND)
COMPUTE DISTANCE - CURRENT VECTOR
7O CURRENT CLUSTER MEAN
IF (FIRST CLUSTER MEAN IN LIST) THEN
SET MINIMUM DISTANCE TO DISTANCE COMPUTED
SET CLOSEST INDEX 10 1
ELSE IF (DISTANCE LESS THAN PREVIOUS
MINIMUM) THEN
SET MINIMUM DISTANCE TO NEW MINIMUM
SET CLOSEST INDEX TO THAT OF NEW MINIMUM

OO0 ONOOOCONOONONNOOOOOHOOOOOO
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C END IF
c INCREMENT CLUSTER-MEAN INDEX
c END DO UNTIL
c ASSIGN CURRENT VECTOR TO CLUSTER OF CLOSEST MEAN
c INCREMENT VECTOR INDEX
c END DO UNTIL
c COMPUTE NEW CLUSTER MEANS BASED ON NEW
¢ ASSIGNMENT AND FIND MAXIMUM UPDATE
c ERROR FOR ALL CLUSTER MEANS
c INCREMENT ITERATION COUNT
c END DO UNTIL
g RETURN .
gCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE CRMEAN(CKLASES,VCOUNT,FFEAT,LFEAT,
c 1 EPSLON, ITERAT)
REAL MFUNCT(3,242),X(4,242),PROT0(4,3),UPDATE(%)
INTEGER CLOSER,VCOUNT, FFEAT,LFEAT,CLASS,VECTOR
INTEGER FETUR,CCOUNT
c COMMON /AREAl/X /AREA2/PROTO /AREA3/MFUNCT
g ¥xx INITIALIZE %
c MAXITR=50
C COMPUTE CLUSTER MEANS BASES ON INITIAL
g MEMBERSHIP ASSIGNMENTS
C DO UNTIL(CLUSTER MEAN FOR EACH CLASS COMPUTED)
c DO 5 CLASS=1,KLASES
c DO UNTIL(MEAN VECTOR # "CLASS™ ZEROED)
DO ! FETUR=FFEAT,LFEAT
PROTOCFETUR,CLASS)=0.0
1 CONTINUE
g END DO UNTIL
c CCOUNT=0
c DO UNTIL(MEAN FOR CURRENT CLASS COMPUTED)
c DO 3 VECTOR=1,VCOUNT
IF(MFUNCT(CLASS,VECTOR) .EQ.1.0) THEN
CCOUNT=CCOUNT+1
c DO UNTILC(VECTOR NUMBER T"VECTOR®™ INCLUDED)
DO 2 FETUR=FFEAT,LFEAT
PROTOCFETUR,CLASS)=PROTO(FETUR,CLASS)+
1 X(FETUR, VECTOR)
2 CONTINUE
c END DO UNTIL
c END IF
3 CONTINUE
g END DO UNTIL
¢ DO UNTIL(MEAN VECTOR DIVIDED BY "CCOUNT™)
DO 4 FETUR=FFEAT,LFEAT
PROTOCFETUR, CLASS)=PROTO(FETUR,CLASS)/CCOUNT
4 CONTINUE
g END DO UNTIL
5 CONTINUE
g END DO UNTIL
g SET ITERATIONS TO ZERO INITIALLY
c ITERAT=0
g % % % BEGIN ITERATIONS % 3 x
c DO UNTIL(CLUSTER MEANS STABILIZE OR MAXIMUM
c ITERATIONS COMPLETED)

L. .
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CONTINUE

DO UNTIL(ALL VECTORS ASSIGNED MEMBERSHIP
ALUE=1.0 IN CLOSEST CLASSC MINIMUM
DISTANCE TO PROYO) AND VALUE=0.0
IN OTHER CLASSES)
DO 10 VECTOR=1,VCOUNT

DO UNTIL(MINIMUM DISTANCE- CURRENT VECTOR
TO ALL MEANS FOUND)
DO 8 CLASS=1,KLASES

XDIST=0.0

DO UNTIL(DISTANCE SQUARED COMPUTED FOR
CURRENT VECTOR AND CLASS PROTO)
DO 7 FETUR=FFEAT,LFEAT
TEMP=X(FETUR, VECTOR)~PROTO(FETUR,CLASS)
XDIST=XDIST+TEMP*TEMP
CONTINUE
END DO UNTIL

IF(CLASS.EQ.1) THEN
DISTMN=XDIST

. CLOSER=]

s ELSE IF(XDIST.LT.DISTMN) THEN
: DISTMN=XDIST

ﬁ CLOSER=CLASS

OO0 O OO0 OOOOOH™

0 Aihatnie s
O~

END IF

CONTINUE
END DO UNTIL

DO UNTILCALL MEMBERSHIP FUNCTIONS OF
CURRENT VECTOR ZEROED)
DO 9 CLASS=1,KLASES
MFUNCT(CLASS,VECTOR)=0.0
CONTINUE
END DO UNTIL

ASSIGN VECTOR TO CLASS NUMBER “CLOSER"™
MFUNCT(CLOSER,VECTOR)=1.0

CONTINUE
END DO UNTIL

DO UNTIL(NEW CLASS MEANS COMPUTED AND
MAXIMUM UPDATE DIFFERENCE FOUND)
DO 16 CLASS=1,KLASES

CCOUNT=0

DO UNTIL(TEMPORARY MEAN VECTOR ZEROED)

DO 11 FETUR=FFEAT,LFEAT
UPDATE(FETUR)=0.0

CONTINUE

END DO UNTIL

DO UNTIL(CLASS MEAN FOR CURRENT CLASS SUMMED) Cet
DO 13 VECTOR=1,VCOUNT : ‘1

IF(MFUNCT(CLASS,VECTOR) .EQ.1.0) THEN -—
CCOUNT=CCOUNT+1 .
DO UNTIL(VECTOR "VECTOR™ INCLUDED) T

DO 12 FETUR=FFEAT,LFEAT
UPDATE(FETUR)=UPDATE(FETUR)+
1 X(FETUR, VECTOR)
2 CONTINUE e
END DO UNTIL C
END IF —_

CONTINUE R
END DO UNTIL -

OO
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3 DO UNTIL(MEAN VECTOR DIVIDED BY ™CCOUNT™)

DO 14 FETUR=FFEAT,LFEAT
UPDATEC(FETUR)=UPDATE(FETUR)/CCOUNT

CONTINUE

END DO UNTIL

DIST=0.0

DO UNTIL(DISTANCE SQUARED UPDATE MEAN TO
PREVIOUS MEAN FOUND, AND NEW MEAN
ASSIGNED AS THE UPDATE VECTOR FOUND)
DO 15 FETUR=FFEAT,LFEAT

TEMP=PROTO(FETUR, CLASS)-UPDATE(FETUR)
DIST=DIST+TEMP*TEMP
PROTOCFETUR,CLASS)=UPDATE(FETUR)

5 CONTINUE
END DO UNTIL

IF(CLASS.EQ.1) THEN
DIFMAX=DIST

-

r
O OO0 OO

UE AR
OO0

. ELSE IF(DIST.GT.DIFMAX) THEN
» DIFMAX=DIST

c END IF

16 CONTINUE

c END DO UNTIL

c
g INCREMENT ITERATION COUNT
ITERAT=ITERAT+1

c
IFC((DIFMAX.GT.EPSLON) .AND.C(ITERAT.LE.MAXITR))
1 GO 710 6
g END DO UNTIL
RETURN
END
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SOPTIMIZE

A SUBROUTINE WHICH IMPLEMENTS A FUZZY VERSION
OF THE NEAREST NEIGHBOR ALGORITHM. THE RESULT
IS TO ASSIGN MEMBERSHIP FUNCTION VALUES TO THE
VECTOR TO BE CLASSIFIED INSTEAD OF ASSIGNING
THE VECTOR TO ONE OF THE CLASSES REPRESENTED
BY THE LABELLED DATA USED.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: MAR 84
FILENAME: FUZNEARN.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
FUZNNC(FZFIER,KLASES, FFEAT,LFEAT, VCOUNT,K,TEST1)

INPUT VARIABLES(NOT CHANGED):

FZFIER - REAL VALUE OF THE WEIGHTING FACTOR
USED IN THE ALGORITHM

KLASES - INTEGER COUNT OF NUMBER OF CLASSES

FFEAT - INTEGER WHICH SETS FIRST FEATURE IN
DATA VECTORS TO CONSIDER

LFEAT - INTEGER WHICH SETS LAST FEATURE IN
DATA VECTORS TO CONSIDER

VCOUNT - INTEGER COUNT OF NUMBER OF DATA
VECTOR SAMPLES

K - INTEGER COUNT OF NUMBER OF NEAREST NEIGHBORS
TO USE FOR MEMBERSHIP FUNCTION ASSIGNMENTS

TEST1 - INTEGER INDEX WHICH INDICATES WHICH OF
THE DATA VECTORS 1S THE CURRENT TEST
SAMPLE TO BE ASSIGNED MEMBERSHIPS

X = REAL ARRAY 4 BY 242 WHICH HOLDS ALL DATA VECTORS,
PASSED IN LABELLED FORTRAN COMMOM "AREA1™

MFUNCT - REAL ARRAY 3 BY 262 WHICH HOLDS

MEMBERSHIPS OF LABELLED SAMPLES USED

IN ASSIGNMENT OF “TEST1"™'S MEMBERSHIPS,

PASSED IN LABELLED FORTRAN COMMON TAREA3"
OUTPUT VARIABLES:
NMFUNC - REAL ARRAY 3 BY 262 WHICH HOLDS THE

MEMBERSHIP ASSIGNMENTS PRODUCED,

PASSED IN LABELLED FORTRAN COMMON T"AREAS™

ccecececececcececcececceeccecccceccccececccccccececceccccecceccece

PSEUDO - CODE SOLUTION

ENTER FUZNEARN )
INITIALIZE LABELLED SAMPLE INDEX s
INITIALIZE MATCH = o
INITIALIZE NEAREST NEIGHBOR COUNTER —
DO UNTIL( "K" NEAREST NEIGHBORS FOUND S,

OR A MATCH FOUND) T
COMPUTE DISTANCE FROM TEST VECTOR R
T0 CURRENT LABELLED SAMPLE .
IF ¢ DISTANCE =0 ) THEN ‘]
MATCH = YES 3

ELSE IF ( NEAREST NEIGHBOR COUNTER <= ;
"K® ) THEN —
INCLUDE CURRENT LABELLED SAMPLE )
IN LIST OF NEAREST NEIGHBORS L
INCREMENT NEAREST NEIGHBOR COUNTER ;:&
<
k

OO0 OOOOOHOOOOOOOOONE

ELSE IF (DISTANCE LESS THAN THAT o




LI

¢ Pl

LA

8. A

OOOOOONOOOOOOOOOOOO

G OO0 (g

O OO0

(2]

O0Ow

T Y T

PAGE 83

OF ANY PREVIOUS NEAREST NEIGHBOR ) THEN
DELETE FARTHEST GOF PREVIOUS NEAREST NEIGHBORS
EN%N§¥UDE NEW NEAREST NEIGHBOR IN LIST
INCREMENT LABELLED SAMPLE INDEX
END DO UNTIL
IF ¢ MATCH = NO ) THEN
ASSIGN MEMBERSHIPS OF MATCH LABELLED
SAMPLE TO TEST VECTOR

SE
ASSIGN MEMBERSHIPS AS A FUNCTION OF INVERSE
END ?éSTANCES FROM NEAREST NEIGHBORS

EL

RETURN
¢ccceeceecccccceccecccccceccecccccececcecccccecccecceccccecccece

SUBROUTINE FUZNN(FZFIER,KLASES,FFEAT,LFEAT,
1 VCOUNT,K, TESTL)

LOGICAL MATCH

REAL MFUNCT(3,2642),X(%,242),NMFUNC(3,242),DNEAR(10)
INTEGER FFEAT,CLASS,NEAR(10),FETUR

INTEGER TEST1,COUNTR,VTRAIN,VCOUNT

COMMON /AREA3I/MFUNCT /AREA1/X /AREA5/NMFUNC

COMPUTE POWER DEPENDENT ON “FUZZIFIER™

POWER=1.0/(FZFIER-1.0)

MATCH=.FALSE.
DSTMAX=0.0
VTRAIN=1
COUNTR=1

DO UNTIL("K"™ NEAREST NEIGHBORS FOUND
OR A MATCH OCCURS)
CONTINUE

DIST=0.0
IF(VTRAIN.NE.TEST1) THEN

DO UNTIL(DISTANCE COMPUTED)

DO 3 FETUR=FFEAT,LFEAT
TEMP=X(FETUR,VTRAIN)~X(FETUR, TEST1)
DIST=DIST+TEMPXTEMP

CONTINUE

END DO UNTIL

IF(DIST.EQ.0.0) THEN
MATCH=.TRUE.
MATNUM=VTRAIN
ELSE IF(COUNTR.LE.K) THEN
DNEARCCOUNTR)=DIST
NEARCCOUNTR)I=VTRAIN
IF(DNEAR(COUNTR).GT.DSTMAX) THEN
DSTMAX=DNEAR(COUNTR)
MAXNER=COUNTR
END IF
COUNTR=COUNTR+1
ELSE IF(DIST.LT.DSTMAX) THEN
DSTMAX=DIST
DNEARC(MAXNER)=DIST
NEARCMAXNER)=VTRAIN
DO UNTIL(NEW MAXIMUM DISTANCE OF
K-NEAREST NEIGHBORS FOUND)
DO 4 INDEX=1,K
IF(DNEARCINDEX).GT.DSTMAX) THEN
DSTMAX=DNEARCINDEX)
MAXNER=INDEX
END IF
CONTINUE
END DO UNTIL

t,' ’-,
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END IF
END IF
VTRAIN=VTRAIN+1

c
IFCC.NOT.MATCH) .AND.(VTRAIN.LE.VCOUNT))
. 160 70 1
‘ g END DO UNTIL
» c IFC.NOT.MATCH)Y THEN
i c DO UNTILC(MEMBERSHIP FUNCTIONS ASSIGNED
¢ TO VECTOR NUMBER "VTEST™)
g c DO 6 CLASS=1,KLASES
NMFUNC(CLASS,TEST1)=0.0
SUM=0.0
c DO UNTIL(MEMBERSHIP FUNCTION COMPUTED
c FOR CLASS NUMBER "CLASS™)
I DO 5 INDEX=1,K
WDIST= 1.0/DNEARCINDEX)**POWER
- SUM=SUM+WDIST
: NMFUNC(CLASS, TEST1)=NMFUNC(CLASS,TEST1)+
3 1 MFUNCT(CLASS, NEARCINDEX) )*WDIST
K 5 CONTINUE
g g END DO UNTIL
; ¢ NMFUNCC(CLASS, TEST1)=NMFUNCC(CLASS, TEST1)/5UM
g 6 CONTINUE
; g END DO UNTIL
g . ELSE
- ¢ DO UNTIL(MEMBERSHIP FUNCTIONS ASSIGNED)
i DO 7 CLASS=1,KLASES
NMFUNCC(CLASS, TEST1)=MFUNCT(CLASS, MATNUM)
- 7 CONTINUE
Ny g END DO UNTIL
N END IF
- ¢
d RETURN
l END
2
]
.,
D,
::;
E
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OPTIMIZE

A SUBROUTINE WHICH IMPLEMENTS A K-NEAREST
NEIGHBOR ALGORITHM. VECTORS ARE ASSIGNED

TO A CLASS VIA MEMBERSHIP FUNCTION ASSIGNMENT
WITH POSSIBLE VALUES=>0,1¢

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: MAR 84
FILENAME: CRISPNN.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL CRSPNN(KLASES,FFEAT,LFEAT,K,VCOUNT,TEST1)

INPUT VARIABLES(NOT CHANGED):
KLASES - INTEGER COUNT OF NUMBER OF CLASSES

FFEAT - INTEGER WHICH SETS FIRST FEATURE IN
DATA VECTORS TO CONSIDER

LFEAT - INTEGER WHICH SETS LAST FEATURE IN
DATA VECTORS TO CONSIDER

K - INTEGER COUNT OF NUMBER OF NEAREST
NEIGHBORS TO USE FOR CLASSIFICATION

VCOUNT - INTEGER COUNT OF NUMBER OF
DATA VECTORS IN DATA SET

TEST1 - INTEGER INDEX OF SAMPLE WHICH
IS BEING CLASSIFIED

X - REAL ARRAY 4§ BY 242 WHICH HOLDS ALL DATA VECTORS,
PASSED IN LABELLED FORTRAN COMMON “AREA1"™

MFUNCT - REAL ARRAY 3 BY 2642 WHICH HOLDS MEMBERSHIPS
LABELLED SAMPLES USED IN CLASSIFICATION OF
"TESTL1™, PASSED IN LABELLED FORTRAN
COMMON ™AREA3™

OUTPUT VARIABLES:

NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS THE
MEMBERSHIP ASSIGNMENTS OF SAMPLE
"TEST1"™, PASSED IN LABELLED
FORTRAN COMMON ™AREA3"™

ccececcceccccccccccecccccceccececcccccecccccceccecccccceecccecceccece

PSEUDO - CODE SOLUTION

ENTER CRSPNN
INITIALIZE LABELLED SAMPLE INDEX
INITIALIZE MATCH = NO
INITIALIZE NEAREST NEIGHBOR COUNTER TO 0
DO UNTIL("K™ NEAREST NEIGHBORS FOUND
OR A MATCH FOUND)
COMPUTE DISTANCE FROM TEST VECTOR
TO CURRENT LABELLED SAMPLE
IF(DISTANCE = 0 ) THEN
MATCH = YES
ELSE IF ( NEAREST NEIGHBOR COUNTER <= "K") THEN
INCLUDE CURRENT LABELLED SAMPLE IN
LIST OF K NEAREST NEIGHBORS
INCREMENT NEAREST NEIGHBOR COUNTER
ELSE IF(DISTANCE LESS THAN THAT OF ANY
PREVICUS NEAREST NEIGHBOR) THEN
DELETE FARTHEST OF PREVIOUS NEAREST NEIGHBORS
INCLUDE NEW NEAREST NEIGHBOR IN LIST
INCREMENT LABELLED SAMPLE INDEX
END DO UNTIL
IF (MATCH = NO ) THEN
COUNT NUMBER OF NEAREST NEIGHBORS

AT N N T R e e
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FROM EACH CLASS
IF(A TIE FOR MAXIMUM NUMBER BETWEEN CLASSES) THEN
COMPUTE SUM OF DISTANCES FROM TEST VECTOR
TO ALL NEIGHBORS IN EACH TYING CLASS
IF( TIE IN SUMS COMPUTED) THEN
ASSIGN TEST VECTOR TO LAST CLASS WHICH TIED

ELSE
ASSIGN TEST VECTOR TG CLASS OF MINIMUM SUM
END IF
ELSE
ASSIGN TEST VECTOR TO CLASS OF
MAXIMUM NUMBER OF NEIGHBORS
END IF
ELSE
ASSIGN TEST VECTOR TO CLASS OF MATCH
END IF
RETURN

cceceeeccecceccceccceccecccccececccceccccccececceccccccccccceeccece
SUBROUTINE CRSPNN(KLASES,FFEAT,LFEAT,K,VCOUNT,TEST1)

LOGICAL MATCH

REAL MFUNCT(3,262),X(4,242),NMFUNC(3,242)

REAL DNEAR(10),DSUM(10)

INTEGER FFEAT,CLASS,VECTOR,NEAR(10),FEATUR
INTEGER VCOUNT,NEARCL(10),END(3),VTRAIN

INTEGER COUNTR,COUNT(3),MAXNUM(10),TESTL,START(3)
COMMON /AREA3/MFUNCT /AREA1/X /AREAS5/NMFUNC
COMMON /AREA6/ START,END

MATCH=.FALSE.
DSTMAX=0.0
VTRAIN=1
COUNTR=1

DO UNTIL(™K™ NEAREST NEIGHBORS FOUND
OR A MATCH OCCURS)
CONTINUE

IFC(VTRAIN.NE.TEST1) THEN
DIST=0.0

DO UNTIL(DISTANCE COMPUTED)

DG 3 FEATUR=FFEAT,LFEAT
TEMP=X(FEATUR,VTRAIN)-X(FEATUR,TEST1)
DIST=DIST+TEMPXTEMP

CONTINUE

END DO UNTIL

IF(DIST.EQ.0.0) THEN
MATCH=.TRUE.
MATNUM=VTRAIN
ELSE IF(COUNTR.LE.K) THEN
DNEAR(CCOUNTR)=DIST
NEARCCOUNTR)I=VTRAIN
IF(DNEAR(COUNTR).GT.DSTMAX) THEN
DSTMAX=DNEAR(COUNTR)
MAXNER=COUNTR
END IF
COUNTR=COUNTR+1
ELSE IF(DIST.LT.DSTMAX) THEN
DSTMAX=DIST
DNEAR(MAXNER)=DIST
NEAR(MAXNER)=VTRAIN
c DO UNTIL(NEW MAXIMUM DISTANCE OF K
c NEAREST NEIGHBORS FOUND)
DO 4 INDEX=1,K
IF(DNEARCINDEX).GT.DSTMAX) THEN
DSTMAX=DNEAR(CINDEX)
MAXNER=INDEX

O 00O OOOOOO
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END IF
CONTINUE
END DO UNTIL

END IF

END IF
VTRAIN=VTRAIN+1

IF(C.NOT.MATCH).AND.(VTRAIN.LE.VCOUNT))
GO TO 1

END DO UNTIL
IFC(.NOT.MATCH) THEN

A lhn Bl B B

DO UNTIL(COUNTS OF NEAREST NEIGHBORS
CLASS'S AND CURRENT VECTOR'S
MEMBERSHIP*S ZEROED)

D0 5 CLASS=1,KLASES

COUNT(CLASS)=0
NMFUNCC(CLASS,TEST1)=0.0
CONTINUE
END DO UNTIL

DO UNTIL(CLASS NUMBER OF K-NEAREST
NEIGHBORS, AND COUNT OF
NEAREST NEIGHBORS IN A CLASS FOUND)
DO 7 INDEX=1,K

DO UNTIL(TINDEX™ NEIGHBOR'S
CLASS FOUND)
DO 6 CLASS=1,KLASES
IFC(NEARCINDEX).GE.START(CLASS)).AND,
(NEARCINDEX).LE.END(CLASS))) THEN
COUNT(CLASS)=COUNT(CLASS)+1
NEARCL (INDEX)=CLASS
END IF
CONTINUE
END DO UNTIL

CONTINUE
END DO UNTIL

DO UNTILC(COUNTS SEARCHED FOR MAXIMUM(S) )
DO 8 CLASS=1,KLASES
IF(CLASS.EQ.1) THEN
MAX=COUNT(CLASS)
MAXCNT=1
MAXNUM(MAXCNT)=CLASS
ELSE IF(COUNT(CLASS).GT.MAX) THEN
MAX=COUNT(CLASS)
MAXNUM(MAXCNT)=CLASS
ELSE IF(COUNT(CLASS).EQ.MAX) THEN
MAXCNT=MAXCNT+1
MAXNUM(MAXCNT)=CLASS
END IF
CONTINUE
END DO UNTIL

IF(MAXCNT.EQ.1) THEN
NMFUNC(MAXNUM(MAXCNT), TEST1)=1.0

ELSE
DO UNTIL(SUM OF DISTANCES OF NEIGHBORS
IN EACH CLASS WHICH TIED
FOR A MAJORITY COMPUTED)
DO 10 INDEX=1,MAXCNT
DSUMCINDEX)=0.0
DO 9 NEIBOR=1,K
IFCNEARCL(NEIBOR) .EQ.MAXNUMCINDEX)) THEN
DSUMCINDEX)=DSUM(INDEX)+DNEARCNEIBOR)
END IF
CONTINUE
CONTINUE
END DO UNTIL
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c DO UNTIL(MAX OF SUMS OF DISTANCES
c COMPUTED ABOVE FOUND)
DO 11 INDEX=1,MAXCNT
IFCINDEX.EQ.1) THEN -
DMIN=DSUMCINDEX) —
MIN=INDEX
ELSE IF(DSUMCINDEX).LE.DMIN) THEN
DMIN=DSUM(INDEX)

MIN=INDEX A

END IF o

11 CONTINUE S

¢ END DO UNTIL T

c —

C ASSIGN VECTOR TO THE CLASS- WITH MINIMUM L

C TOTAL DISTANCES(TIE GUES T0 LAST MININUM FOUND) o

NMFUNC CNEARCL (MIN) , TEST1)=1.0 -

END IF :

c N

. . ELSE o

¢ DO UNTIL(MEMBERSHIP FUNCTIONS ASSIGNED) b
DO 12 CLASS=1,KLASES :

NMFUNC CCLASS, TEST1)=MFUNCTC(CLASS, MATNUM) L

12 CONTINUE .

¢ END DO UNTIL s

END IF L

RETURN L.

END
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OPTIMIZE
A ROUTINE WHICH IMPLEMENTS A FUZZY VERSION 1
OF THE NEAREST PROTOTYPE ALGORITHM. THE ;
RESULT IS TO ASSIGN MEMBERSHIP FUNCTION ‘
VALUES TO THE VECTOR TO BE CLASSIFIED ‘
INSTEAD OF ASSIGNING THE VECTOR TO ONE
OF THE CLASSES REPRESENTED BY THE PROTOTYPE
DATA USED.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: MAR 84
FILENAME: FUZPROTO.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL FPROTO(FZFIER,KLASES,FFEAT,LFEAT,TEST1)

INPUT VARIABLES(NOT CHANGED):

FZFIER - REAL WEIGHTING FACTOR USED IN :
. THE MEMBERSHIP ASSIGNMENTS l

KLASES - INTEGER COUNT OF NUMBER OF CLASSES

FFEAT - INTEGER WHICH SETS THE FIRST
FEATURE IN THE DATA SET TO CONSIDER

LFEAT - INTEGER WHICH SETS THE LAST FEATURE |
IN THE DATA SET T0 CONSIDER -

TEST1 - INTEGER INDEX WHICH PQINTS TO VECTOR
IN DATA TO ASSIGN MEMBERSHIPS

$

c

c

c

C

C

¢

c

c

c

c

c

c

C

c

c

C

c

C

c

c

c

C

c

c

c

¢

c

C

¢

c

c

:

€ X - REAL ARRAY 4 BY 262 WHIfH HOLDS SAMPLES,
g PASSED IN LABELLED FORTRAN COMMON ™AREAL"™
C  PROTO-REAL ARRAY § BY 3 WHICH HOLDS CLASS
c PROTOTYPES, PASSED IN LABELLED

[ FORTRAN COMMON "“AREA2"

C
c
c
C
c
¢
c
c
c
c
C
c
C
C
c
C
c
C
C
c
C
C
c
C
c
C
C
c
C
c
C
C
c
C

OUTPUT VARIABLES:

NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS THE
MEMBERSHIP FUNCTIONS ASSIGNED, PASSED !
IN LABELLED FORTRAN COMMON ™AREA5"™

¢cccececeececceececececececceccceccceceeccceeceececceecceecceeccceccee
PSEUDO - CODE SOLUTION

ENTER FPROTO
SET CLASS INDEX=1
INITIALIZE MATCH = NO
DO UNTILC(DISTANCE FROM TEST SAMPLE TO ALL
PROTOTYPES COMPUTED OR A MATCH FOUND)
COMPUTE DISTANCE FROM CURRENT CLASS
PROTOTYPE TO TEST SAMPLE
IF (DISTANCE = 0 ) THEN
MATCH = YES
END IF
INCREMENT CLASS INDEX
END DD UNTIL
IF C MATCH ) THEN
ASSIGN TEST SAMPLE MEMBERSHIP OF
LSEROTOTYPE WHICH MATCHED

ASSIGN MEMBERSHIPS AS A FUNCTION
OF INVERSE DISTANCES COMPUTED

¢cceccecececcececcceccccececcececccccccececceecceceeccccccecceccccee
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SUBROUTINE FPROTO(FZFIER,KLASES,FFEAT,LFEAT,TEST1)

c S
LOGICAL MATCH LI
REAL PROTO(4,3),NMFUNC(3,242),PDIST(3),X(4,242) o
INTEGER FFEAT,CLASS,VECTOR, FETUR, TEST1 ——
] COMMON /AREA2/PROTO /AREA1/X /AREAS/NMFUNC .
. C COMPUTE POWER WHICH IS A FUNCTION OF THE "FUZZIFIER" R
- ) POWER=1.0/(FZFIER-1.0) S
. DSUM=0.0 T
. CLASS=1 =
' ¢ DO UNTILC(DISTANCE CURRENT VECTOR TO EACH s
. ¢ PROTOTYPE, OR A MATCH FOUND) S
1 CONTINUE L
2 MATCH=.FALSE. SR
i - . PDIST(CLASS)=0.0 e
c DO UNTIL(DISTANCE COMPUTED) k.
DO_2 FETURSFFEAT,LFEAT L
TEMP=PROTO(FETUR,CLASS)-X(FETUR, TEST1) o
PDIST(CLASS)=PDIST(CLASS)+TEMPXTEMP =
2 CONTINUE =
¢ END DO UNTIL s
IF(PDIST(CLASS).EQ.0.0) THEN —
MATCH=. TRUE. -
MNUM=CLASS ol
ELSE -
PDIST(CLASS)=1.0/PDIST(CLASS)*XPOWER L
DSUM=DSUM+PDIST(CLASS) E
. END IF e
CLASS=CLASS+1 -

(2]
[ 4

IFCC.NOT.MATCH) .AND.(CLASS.LE.KLASES))
GO T0 1

g END DO UNTIL
IF(MATCH) THEN .
C DO UNTIL(MEMBERSHIP FUNCTIONS OF o
¢ CURRENT VECTOR ZEROED) Lo
DO 3 CLASS=1,KLASES -—
NMFUNC(CLASS,TEST1)=0.0 .
3 CONTINUE
g END DO UNTIL
C ASSIGN THE VECTOR MEMBERSHIP IN THE
g CLASS FOR WHICH A MATCH OCCURRED :
c NMFUNC(MNUM, TEST1)=1.0 -—
ELSE
c DO UNTIL(MEMBERSHIP FUNCTIONS
c ASSIGNED FOR TEST VECTOR)
DO 4 CLASS=1,KLASES ]
NMFUNC(CLASS, TEST1)=PDIST(CLASS)/DSUM -
4 CONTINUE v
C END DO UNTIL -_—
END IF e

RETURN
END
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b‘
S OPTIMIZE
A SUBROUTINE WHICH IMPLEMENTS A CRISP VERSION

OF THE NEAREST PROTOTYPE ALGORITHM. THE

RESULT IS TO ASSIGN MEMBERSHIP FUNCTION

VALUES TO THE VECTOR TO BE CLASSIFIED

INSTEAD OF ASSIGNING THE VECTOR TO ONE OF

THE CLASSES REPRESENTED BY THE PROTOTYPES

MRITTEN BY: MICHAEL R. GRAY

COMPLETED: APR 84

FILENAME: CRISPNP.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL CRSNP(KLASES,FFEAT,LFEAT,TEST1)

INPUT VARIABLES(NOT CHANGED):
KLASES - INTEGER COUNT OF NUMBER OF CLASSES

FFEAT - INTEGER WHICH SETS THE FIRST FEATURE
IN DATA SET TO CONSIDER

LFEAT - INTEGER WHICH SETS THE LAST FEATURE
IN DATA SET TO CONSIDER

TEST1 — INTEGER WHICH HOLDS THE INDEX
OF THE CURRENT TEST SAMPLE

X = REAL ARRAY 4 BY 262 WHICH HOLDS ALL DATA
VECTORS, PASSED IN LABELLED FORTRAN COMMON "AREA1"™

PROTO - REAL ARRAY 4 BY 3 WHICH HOLDS THE CLASS
PROTOTYPES USED IN MEMBERSHIP FUNCTION
ASSIGNMENT, PASSED IN LABELLLED FORTRAN
COMMON TAREA2"

OUTPUT VARIABLES:
NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS
THE RESULTING MEMBERSHIP FUNCTION
ASSIGNMENTS FOR THE CURRENT TEST VECTOR
ccecceecceecceccceccccceceececcecccceccccccccccccccccccccececccce

PSEUDO - CODE SOLUTION

Y APURCALALTMY PR

AL g

BRI
Y

W TF Y
AR 2
.

ENTER CRSPNP

INITIALIZE MATCH = NO :

INITIALIZE CLASS INDEX=1 I
DO UNTIL(DISTANCES FROM TEST SAMPLE TO EACH e
PROTOTYPE COMPUTED OR A MATCH FOUND) "o
COMPUTE DISTANCE FROM TEST SAMPLE ——
70 CURRENT CLASS PROTOTYPE G
IFC(DISTANCE = 0 ) THEN K
MATCH = YES SHe
END IF 1
INCREMENT CLASS INDEX izl
END DO UNTIL et
IF(MATCH = YES) THEN P
ASSIGN TEST VECTOR MEMBERSHIPS N
OF MATCHING PROTOTYPE S

ELSE
DETERMINE CLASS OF CLOSEST PROTOTYPE e
IF ¢ A TIE EXISTS) THEN S
ASSIGN TEST SAMPLE TO CLASS OF LAST R
ELSgLOSE PROTOTYPE DETECTED <
ASSIGN TEST SAMPLE TO CLASS OF —
C%gSEST PROTOTYPE el

END IF
RETURN

AOOOOOOOONONOOOOOCOOOOONONONONON0ONONONONOONONNNOONOOONNONONNONNOOONONONONNONONNNOOOONOOO
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c
gCCOCCCCCCCCCcccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC R
SUBROUTINE CRSPNP(KLASES,FFEAT,LFEAT,TEST1) -

c .I-.'-
LOGICAL MATCH .
REAL PROTO(4%,3),NMFUNC(3,242),PDIST(3),X(4,242) ol
INTEGER FFEAT,CLASS,VECTOR,FETUR,TEST1 s
COMMON /AREA2/PROTO /AREA1/X /AREA5/NMFUNC o

DSUM=0.0 PR
CLASS=1 i
MATCH=.FALSE. e

DO UNTILC(DISTANCE CURRENT VECTOR TO EACH
PROTOTYPE COMPUTED, OR A MATCH FOUND)
CONTINUE

PDIST(CLASS)=0.0 Rt

DO UNTIL(DISTANCE COMPUTED) -
DO 2 FETUR=FFEAT,LFEAT -
- TEMP=PROTO(FETUR,CLASS)-X(FETUR,TEST1) .
- PDISTC(CLASS)=PDIST(CLASS)+TEMP*TEMP
- CONTINUE

END DO UNTIL

OO0 OO0

OOON

IF(PDISTC(CLASS).EQ.0.0) THEN el
MATCH=. TRUE. e
MNUM=CLASS S

END IF

CLASS=CLASS+1
IFC(C.NOT.MATCH).AND.(CLASS.LE.KLASES))
GO 7O 1
END DO UNTIL

DO UNTIL(MEMBERSHIP FUNCTIONS OF
CURRENT VECTOR ZEROED)
DO 3 CLASS=1,KLASES
NMFUNC(CLASS,TEST1)=0.0
CONTINUE
END DO UNTIL

IF(MATCH) THEN

ASSIGN THE VECTOR MEMBERSHIP IN THE CLASS
FOR WHICH A MATCH OCCURRED

NMFUNC(MNUM,TEST1)=1.0

ELSE
DO UNTIL(CLOSEST OF THE PROTOTYPES FOUND)
DO 4 CLASS=1,KLASES
IF(CLASS.EQ.1) THEN
CLOSE=PDIST(CLASS)
NUMBER=CLASS
ELSE IF(PDIST(CLASS).LE.CLOSE) THEN
CLOSE=PDIST(CLASS)
NUMBER=CLASS
END IF
CONTINUE
END DO UNTIL

ASSIGN VECTOR TO CLASS OF CLOSEST PROTOTYPE
(IF A TIE CLOSEST=LAST CLOSEST FOUND)

NMFUNC(NUMBER, TEST1)=1.0
END IF
RETURN

(3]
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OPTIMIZE
A SUBROUTINE WHICH ASSIGNS MEMBERSHIP
FUNCTION VALUES BASED ON THE NEAREST
NEIGHBOR "FUZZIFYING™ RULE.,
WRITTEN BY: MICHAEL R. GRAY
COMPLETED: JUNE 84
FILENAME: MGFZFYNN.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE): CALL
FZFYNNCFZFIER, KLASES, VCOUNT, FFEAT,LFEAT,K, TEST1)

INPUT VARIABLES(NOT CHANGED):

FZFIER - REAL VALUE OF THE WEIGHTING FACTOR

KLASES - INTEGER COUNT OF NUMBER OF CLASSES

VCOUNT - INTEGER COUNT OF NUMBER OF SAMPLE VECTORS

FFEAT - INTEGER WHICH SET FIRST FEATURE
IN SAMPLE VECTORS TO CONSIDER

LFEAT - INTEGER WHICH SET LAST FEATURE IN
IN SAMPLE VECTOR TO CONSIDER

K -~ INTEGER COUNT OF NUMBER OF NEIGHBORS TO
USE FOR MEMBERSHIP FUNCTION INITIALIZATION

TEST1 - INTEGER INDEX OF TEST SAMPLE

X = REAL ARRAY & BY 262 WHICH HOLDS ALL SAMPLE VECTORS,
PASSED IN LABELLED FORTRAN COMMON "AREAL™

START - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS THE
STARTING INDICES OF EACH CLASS OF SAMPLES,
PASSED IN LABELLED FORTRAN COMMON WAREA6™
END - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
THE ENDING INDICES OF EACH CLASS OF SAMPLES,
PASSED IN LABELLED FORTRAN COMMON "AREA&™
OUTPUT VARIABLES:
MFUNCT - REAL ARRAY 3 BY 2642 WHICH HOLDS
THE MEMBERSHIP FUNCTION ASSIGNMENTS,
PASSED IN LABELLED FORTRAN COMMON ™AREA3"
cceececceccccccecccccceeccececcceccecceccceccccceccceccccecceccece

PSEUDO - CODE SOLUTION

(o o

~aTiTe®
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ENTER FZFYNN
INITIALIZE VECTOR INDEX = 1
DO UNTIL ¢ EACH LABELLED SAMPLE USED TO CLASSIFY
"TESTL™ ASSIGNED MEMBERSHIPS)
IF(VECTOR NOT EQUAL TO "TEST1") THEN
FIND K NEAREST NEIGHBORS IN LABELLED
SAMPLE SET TO CURRENT VECTOR
DETERMINE COUNT OF NEAREST NEIGHBORS
TO USE FOR INITIALIZATION
INITIALIZE CLASS INDEX = 1
DO UNTIL (CURRENT VECTOR ASSIGNED
MEMBERSHIP IN ALL CLASSES)
IF(CLASS INDEX = KNOWN CLASS
OF CURRENT VECTOR) THEN
ASSIGN MEMBERSHIP = 0.51 ¢+ (COUNT OF
ELS;K" NEAREST NEIGHBORS FOUND/"K™) % 0.49
ASSIGN MEMBERSHIP = (COUNT OF "K"
ENDN%:REST NEIGHBORS FOUND/"K™)X0.49

OO0 TNOOONONO
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INCREMENT CLASS INDEX
END DO UNTIL
END IF
INCREMENT VECTOR INDEX
END DO UNTIL
RETURN

¢cceeecceecccecceccceceeccccccecececcceeccceecccccccececececcceccccccee

SUBROUTINE FZFYNN(FZFIER,KLASES,VCOUNT,FFEAT,
1 LFEAT.K,TEST1)

REAL MFUNCT(3,242),X(6,242),DNEARC10)
. INTEGER FFEAT,COUNTR,VECTOR,NEAR(10)
INTEGER START(3),END(3),VCOUNT,TEST1,VTRAIN
INTEGER FETUR,CLASS,COUNT(3),VCLASS
COMMON Z/AREAS/MFUNCT /AREA1/X /AREA6/START,END

AOOOOOOON

B N B A M o=t g

L2

VTS el
.
'

. ¢
A
¢ o
Lo c DO UNTILCALL DATA ASSIGNED MEMBERSHIPS) T
h . DO 48 VTRAIN=1,VCOUNT
. . IFCVTRAIN.NE.TEST1) THEN
5 COUNTR=1
A DSTMAX=0.0 SR
L . MAXNER=1 R
¢ DO UNTIL(K NEAREST NEIGHBORS FOUND) -

DO 5 VECTOR=1,VCOUNT

IF(CVECTOR.NE.VTRAIN).AND.
1C(VECTOR.NE.TEST1)) THEN

DIST=0.0

DO UNTIL(DISTANCE COMPUTED)

DO 3 FETUR=FFEAT,LFEAT
TEMP=X(FETUR, VTIRAIN)-X(FETUR, VECTOR)
DIST=DIST+TEMPXTEMP

CONTINUE

END DO UNTIL

IF(COUNTR.LE.K) THEN
DNEARCCOUNTR)=DIST
NEAR(COUNTR)=VECTOR
IF(DNEARCCOUNTR).GT . DSTMAX) THEN

DSTMAX=DNEAR(COUNTR)
MAXNER=COUNTR
END IF
COUNTR=COUNTR+1

ELSE IF(DIST.LT.DNEAR(MAXNER)) THEN
DNEAR(MAXNER)=DIST
NEAR(MAXNER)=VECTOR
DO UNTIL(NEW MAXIMUM DISTANCE OF

K NEAREST NEIGHBORS FOUND)
DO _& 1INDEX=1,K
IF(DNEARCINDEX).GT.DNEAR(MAXNER)) THEN
MAXNER=INDEX

* END IF
CONTINUE
END DO UNTIL

END IF

END IF

CONTINUE
END DO UNTIL

Do UNTIL(CLASS OF NEAREST NEIGHBORS
AND "VTRAIN™ DETERMINED)
DO 10 CLASS=1,KLASES
COUNT(CLASS)=0
DO 7 INDEX=1,K

ao
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IFC(NEARCINDEX).GE.START(CLASS)).AND.
1 (NEARCINDEX).LE.END(CLASS))) THEN
COUNT(CLASS)=COUNT(CLASS)+1
END IF
7 CONTINUE
IFCCVTRAIN.GE.START(CLASS)).AND.
1 (VTRAIN.LE.END(CLASS))) THEN
VCLASS=CLASS
END IF
0 CONTINUE
END DO UNTIL

DO UNTIL(MEMBERSHIP FOR VECTOR
NUMBER TVTRAIN™ ASSIGNED)
DO 15 CLASS=1,KLASES
IF(CLASS.EQ.VCLASS) THEN
MFUNCTC(CLASS,VTRAIN)=0.51+
b ELSE (COUNT(CLASS)%0.49)/K
ENgFgECT(CLASS.VTRAIN)=(COUNT(CLASS)*0.69)/K

5 CONTINUE
END DO UNTIL

END IF

0 CONTINUE
END DO UNTIL

RETURN
END

OO0

OOHO OO
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:OPTIHIZE

A SUBROUTINE WHICH INITIALIZES THE MEMBERSHIP
ARRAY USED IN A FUZZY CLASSIFICATION ALGORITHM.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: APR 84

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL INITMF(VCOUNT,FFEAT,LFEAT,KLASES,HIGH, LOW)

INPUT VARIABLES(NOT CHANGED):
VCOUNT - THE NUMBER OF VECTORS IN VECTOR, AN INTEGER.

FFEAT - THE FIRST FEATURE TO BE CONSIDERED
IN THE DATA VECTORS, AN INTEGER.

LFEAT - THE LAST FEATURE 70 BE CONSIDERED
IN THE DATA VECTORS, AN INTEGER.

HIGH ~ THE REAL VALUE TO USE FOR "HIGH™ MEMBERSHIP.
LOW - THE REAL VALUE YO USE FOR "LOW™ MEMBERSHIP.
X ~ A REAL ARRAY OF DIMENSION (4,262), DATA SET
TO BE CLASSIFIED OR CLUSTERED, PASSED IN
LABELLED FORTRAN COMMON "AREALl"™
OUTPUT VARIABLES:
MFUNCT ~ A REAL ARRAY OF DIMENSION (3,242),CONTAINS
"KLASES™ CLASSES, "VCOUNT™ VECTORS,
PASSED IN LABELLED FORTRAN COMMON WAREA3"™
ccccecccccccececceccccccececccccecceccececcecccceccccccccecceccccec

PSEUDO - CODE SOLUTION

QOO0 OOONOOD

ENTER INITMF
COMPUTE MEAN OF ENTIRE DATA SET
FIND SAMPLE FARTHEST FROM SAMPLE
MEAN AND ASSIGN IT AS "FAR1"
IF( KLASES >= 3 ) THEN
FIND SAMPLE FARTHEST FROM “FAR1"™
ENDA¥2 ASSIGN 1T AS "FAR2"
ASSIGN ALL SAMPLES WITH "HIGH™ MEMBERSHIP IN
CLASS 2 AND "LOW™ MEMBERSHIP IN ALL OTHER CLASSES
IF(C CLASSES < = 2 ) THEN
REASSIGN SAMPLE "FAR1™ WITH "HIGH™ MEMBERSHIP IN
CLASS 1 AND "LOW"™ MEMBERSHIP IN ALL OTHER CLASSES
ELSE IF (CLASSES >= 3) THEN
REASSIGN SAMPLE "FAR1™ WITH "HIGH™ MEMBERSHIP IN
CLASS 3 AND "LOW™ MEMBERSHIP IN ALL OTHER CLASSES
REASSIGN SAMPLE "FARL1™ WITH "HIGH™ MEMBERSHIP IN
ENDC%:SS 1 AND "LOW"™ MEMBERSHIP IN ALL OTHER CLASSES
RETURN

ceeccccceccccececccccccceccccccccecccceecccecececcceccecccccccccce
SUBROUTINE INITMF(VCOUNT,FFEAT,LFEAT,KLASES,HIGH,LON)
INTEGER FFEAT,FETUR,VECTOR,VCOUNT,FARY, FAR2

REAL MFUNCT(3,2642),X(4,242),SMEANCS),LON
COMMON /AREA3S/MFUNCT /AREALl/X :

A OO OONO

¢

¢ DO UNTIL(SAMPLE MEAN VECTOR SET TO ZERO)
DO 1 FETUR=FFEAT,LFEAT
SMEANCFETUR)=0.0

1 CONTINUE

c END DO UNTIL
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o0

1) UNTIL(ALL VECTOR IN DATA SET SUMMED)
DO 3 VECTOR=1,VCOUNT
DO UNTIL(VECTOR NUMBER "VECTOR™ INCLUDED IN SUM)
DO 2 FETUR=FFEAT,LFEAT
SMEANCFETUR)=SMEANCFETUR)+X(FETUR,VECTOR)
CONTINUE
END DO UNTIL
CONTINUE
END DO UNTIL

DO UNTILCALL COMPONENTS OF SAMPLE MEAN VECTOR
DIVIDED BY COUNT OF VECTORS IN DATA SET)

DO & FETUR=FFEAT,LFEAT

SMEANCFETUR)=SMEAN(FETUR)/VCOUNT

CONTINUE

END DO UNTIL

DMAX=0.0

DO UNTILC(VECTOR FARTHEST FROM SAMPLE MEAN FOUND) :
DO 6 VECTOR=1,VCOUNT b 4

DIST1=0.0

DO UNTIL(DISTANCE SQUARED FROM CURRENT
VECTOR TO SAMPLE MEAN FOUND)
DO 5 FETUR=FFEAT,LFEAT
TEMP=X(FETUR, VECTOR)-SMEANCFETUR)
DIST1=DIST1+TEMPXTEMP -
CONTINUE
END DO UNTIL

IF(DIST1.GT.DMAX) THEN
DMAX=DIST1
FAR1=VECTOR

END IF

CONTINUE e
END DO UNTIL R

IF(KLASES.GE.3) THEN
DMAX=0.0

DO UNTIL(VECTOR FARTHEST FROM THE
ONE FOUND ABOVE LOCATED)
DO 8 VECTOR=1,VCOUNT

Di1ST1=0.0

DO UNTILC(DISTANCE SQUARED FROM CURRENT
VECTOR TD VECOTR "FAR1™ FOUND)

DO 7 FETUR=FFEAT,LFEAT

TEMP=X(FETUR, VECTOR)-X(FETUR, FAR1)

DIST1=DIST1+TEMPXTEMP

CONTINUE

END DO UNTIL

IF(DIST1.GT.DMAX) THEN
DMAX=DIST1
FAR2=VECTOR

END IF

CONTINUE
END DO UNTIL
END IF

ASSIGN MEMBERSHIP FUNCTIONS AS FOLLOWS:

DO UNTILCALL VECTORS GIVEN "HIGH" —
MEMBERSHIP IN CLASS 2) L

DO 9 VECTOR=1,VCOUNT

MFUNCT(1,VECTOR)=LOW

MFUNCT(2,VECTOR)=HIGH
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MFUNCT(3,VECTOR)=LOW
CONTINUE
END DO UNTIL

IF(KLASES.LE.2) THEN

GIVE VECTOR NUMBER "FAR1™ A "HIGH"
MEMBERSHIP IN CLASS 1

MFUNCT(1,FAR1)=HIGH
MFUNCT(2,FAR1)=LOW
MFUNCT(3, FAR1)=LOW

ELSE IF(KLASES.GE.3) THEN

GIVE VECTOR NUMBER "FAR1"™ HIGH
MEMBERSHIP IN CLASS 3

MFUNCT(1,FAR1)=LOW
MFUNCT(2,FAR1)=LOW
MFUNCT(3,FAR1)=HIGH

GIVE VECTOR NUMBER ™FAR2"™ HIGH
MEMBERSHIP IN CLASS 1

MFUNCT(1,FAR2)=HIGH

MFUNCT(2, FAR2)=LOW

MFUNCT(3,FAR2)=LOW
END IF

RETURN
END

......

PAGE 99
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SOPTIMIZE
A SUBROUTINE WHICH OUTPUTS THE MEMBERSHIP FUNCTION
ARRAY SELECTED VIA VALUE OF "CHOICE™ AND "OPTION™.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: MAY 86
FILENAME: MGMEMBPR.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL MEMBPR(KLASES,VCOUNT,LU,CHOICE,OPTION)

INPUT VARIABLESC(NOT CHANGED):
KLASES - INTEGER COUNT OF NUMBER OF CLASSES
VCOUNT - INTEGER COUNT OF SAMPLES IN DATA SET

LU - INTEGER WHICH HOLDS THE LOGICAL UNIT
NUMBER USED FOR OUTPUT

CHOICE - INVTEGER WHICH SELECTS WHICH MEMBERSHIP
FUNCTION ARRAY TO OUTPUT

OPTION - INTEGER WHICH SELECTS WHETHER TO OUTPUT
ENTIRE MEMBERSHIP ARRAY "NHMFUNC™ OR ONLY THE
PORTION WHICHINCLUDES MISCLASSIFIED SAMPLES

MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIPS
PRODUCED EITHER BY A CLUSTERING ALGORITHM
OR DIRECT ASSIGNMENT, PASSED IN LABELLED
FORTRAN COMMON ™AREA3"™

c

c

c

c

[~

G

c

c

C

c

c

c

c

C

c

c

c

c

¢

c

c

c

c

¢

c

c

C

c

c

c

c

g

C NMFUNC - REAL ARRAY 3 BY 242 WHICH HOLDS MEMBERSHIP
c ASSIGNMENTS PRODUCED BY ONE OF THE

c CLASSIFER ALGORITHMS, PASSED IN

g LABELLED FORTRAN COMMON TAREAS"™
c
c
C
C
C
C
c
c
C
C
c
C
C
C
C
c
C
c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

WRONG - INTEGER¥2 ARRAY OF DIMENSION 262 WHICH
HOLDS THE INDICES OF MISCLASSIFIED VECTORS,
PASSES IN LABELLED FORTRAN COMMON "AREA4™

WRNCNT - INTEGER COUNT OF MISCLASSIFIED SAMPLES
WHOSE INDICES ARE STORED IN "WRONG™,
PASSED IN LABELLED FORTRAN COMMON ™AREA4™
€cccceeccececeeccccecceccccceecccecccceccccccccccececcceccccccece

PSEUDO - CODE v

ENTER MEMBPR

IF(CHOICE <= 2 ) THEN -

OUTPUT HEADING FOR MEMBERSHIP ARRAY
ELSERODUCED BY CLUSTERING ALGORITHM

OUTPUT HEADING FOR MEMBERSHIP ARRAY RS
Ennrggnucsn BY CLASSIFICATION ALGORITHM D
IF(OPTION = 1 ) THEN -
IF(CHOICE <= 2) THEN oo g
OUTPUT MEMBERSHIP ARRAY PRODUCED —
EL52Y CLUSTERING ALGORITHM .
OUTPUT MEMBERSHIP ARRAY PRODUCED R
BY CLASSIFICATION ALGORITHM _
END IF L
ELSE o ]
IF(CHOICE <= 2) THEN s
OUTPUT MEMBERSHIPS OF SAMPLES MISCLASSIFIED S
ELng CLUSTERING ALGORITHM L
OUTPUT MEMBERSHIPS OF SAMPLES MISCLASSIFIED S
BY CLASSIFICATION ALGORITHM S

. ..‘ .
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END IF
END IF
RETURN

ccceeccceccecccecccccccecceccccccecceccececccccccceccccceccceccecec ;;5
SUBROUTINE MEMBPR(KLASES,VCOUNT,LU,CHOICE,OPTION) i

REAL MFUNCT(3,262),NMFUNC(3,242) e
INTEGER VCOUNT,CLASS,CHOICE,OPTION,WRNCNT,COUNT el
INTEGER¥2 WRONG(242) e
COMMON Z/AREA3/MFUNCT /AREAG/WRNCNT,WRONG S
COMMON /AREAS5/NMFUNC -~

IF(CHOICE.LE.2) THEN
. WRITE(LU,1)
1 FORMAT(/,43X, "PROTOTYPE DATA MEMBERSHIP’
1 ' FUNCTION ARRAY")

c
c
c
c
c
c
c

. ELSE i
S WRITECLU,2) S
| 2 FORMAT(/,43X, "NEWLY ASSIGNED MEMBERSHIP® =
) 1 * FUNCTION ARRAY") ’
: END IF .
IFCOPTION.EQ.1) THEN
: WRITE(LU,3)
f 3 FORMATC® *,"CLASS") —
[ DO 11 INDEX=1,VCOUNT,20 S
- IFCCINDEX+20).GT.VCOUNT) THEN c
COUNT=VCOUNT e
ELSE L
COUNT=INDEX+19 .
. END IF
P WRITECLU,4) CI,I=INDEX,COUNT)
[ A FORMATC® °,6X,'X’,1X,20(2X,I3,1X))
y DO 8 CLASS=1,KLASES
' IFCCHOICE.LE.2) THEN R
WRITECLU,7) CLASS,(MFUNCT(CLASS,I), -
1 I=INDEX, COUNT) N
7 FORMATC® *,13,64X,20F6.3) s
ELSE B
WRITECLU,7) CLASS, (NMFUNC(CLASS,I), -
1 I=INDEX, COUNT) e
END IF S
L Rl
c | -
ELSE »
c
WRITE(LU,12)
12 FORMAT(/, 50X, "MISCLASSIFIED VECTORS ONLY®)
. WRITECLU,3) -
DO 18 INDEX=1,WRNCNT,20 -
IFCCINDEX+20).GT.WRNCNT) THEN L.
COUNT=WRNCNT .
ELSE
COUNT=INDEX+19
END IF
WRITECLU,4) (WRONGCI),I=INDEX,COUNT)
DO 14 CLASS=1,KLASES _
IFCCHOICE.LE.2) THEN :
WRITECLU,7) CLASS,(MFUNCT(CLASS, —_
1 ELsE WRONGCI)), IZINDEX, COUNT)
WRITECLU,7) CLASS, CNMFUNC(CLASS,
1 WRONGCI)), I=INDEX, COUNT)
END IF
| et
. END IF “_

RETURN
END
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OPTIMIZE
A SUBROUTINE WHICH COMPUTES THE UPPER AND
LOWER CUT-SETS OF A FUZZY MEMBERSHIP
FUNCTION ARRAY AND OUTPUTS THE COUNTS OF
SAMPLE VECTORS IN THE RESULTING CUT-SETS.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: APR 34
FILENAME: MGCUTSET.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL CUTSET(ALPHA,BETA,KLASES,VCOUNT,CHOICE,LU)

INPUT VARIABLES(NOT CHANGED):

ALPHA - REAL VALUE OF THE UPPER MEMBERSHIP
LIMIT FOR THE CUT-SET TO BE ASIGNED

BETA - REAL VALUE OF THE LOWER MEMBERSHIP
LIMIT FOR THE CUT-SET TO BE ASIGNED

KLASES - INTEGER COUNT OF NUMBER OF CLASSES
VCOUNT - INTEGER COUNT OF NUMBER OF SAMPLE VECTORS

CHOICE - INTEGER WHICH CHOOSES BETWEEN CUT-SETS
OF MEMBERSHIPS IN ARRAY ASSIGNED BY
CLUSTERING OR CLASSIFICATION ALGORITHM

LU - INTEGER VALUE WHICH SETS THE LOGICAL
UNIT FOR OUTPUT

MFUNCT - REAL ARRAY 3 BY 242 WHICH HOLDS THE
MEMBERSHIPS COMPUTED BY A CLUSTERING
ALGORITHM, PASSED IN LABELLED
FORTRAN COMMON "“AREA3"

NMFUNC - REAL ARRAY 3 BY 2642 WHICH HOLDS THE
MEMBERSHIPS COMPUTED BY A CLASSIFICATION
A CLASSIFICATION ALGORITHM, PASSED IN
LABELLED FORTRAN COMMON “AREAS"

WRONG - INTEGER%2 ARRAY OF DIMENSION 242 WHICH HOLDS i
THE INDICES OF MISCLASSIFIED SAMPLES, PASSED ——
IN LABELLED FORTRAN COMMON T"AREA4™ s

WRNCNT - INTEGER WHICH SPECIFIES NUMBER OF
MISCLASSIFIED SAMPLES INDICES IN "WRONG",
PASSED IN LABELLED FORTRAN COMMON T™AREA4™

OUTPUT VARIABLES: v

KALPHA - INTEGERX¥2 ARRAY 3 BY 242 WHICH HOLDS
INIDCES OF SAMPLES WITH MEMBERSHIP
> "ALPHA™ FOR EACH CLASS

ACOUNT - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
COUNT OF SAMPLES IN "KALPHA™ FOR EACH CLASS

KBETA - INTEGER%2 ARRAY 3 BY 262 WHICH HOLDS
INDICES OF SAMPLES WITH MEMBERSHIP
< "BETA™ FOR EACH CLASS

BCOUNT - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
COUNT OF SAMPLES IN "KBETA™ FOR EACH CLASS

BETWEN - INTEGER%2 ARRAY 3 BY 2642 WHICH HOLDS INDICES .
OF SAMPLES WITH MEMBERSHIP >= TBETA"™ AND S
<= WALPHA™ FOR EACH CLASS B

ICOUNT - INTEGER ARRAY OF DIMENSION 3 WHICH HOLDS
COUNT OF SAMPLES IN "BETWEN™ FOR EACH CLASS

OO0 OOOOON
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c - "';
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee i
PSEUDO - CODE SOLUTION “vq

ENTER CUTSET b
PROMPT USER TO CHOOSE IF ALL SAMPLES TO BE L
TESTED ("ICHOICE"=1) OR ONLY MISCLASSIFIED B
SAMPLES TO BE TESTED("ICHOICE"=2) S

IF(ICHOICE=2) THEN -
SET SAMPLE COUNT YO "WRNCNT™

ELSE
E"SET SAMPLE COUNT TO ™VCOUNT"

DO UNTILC ALL CLASSES CONSIDERED)
IF( CHOICE <=2 ) THEN
GET INDICES AND COUNT OF SAMPLES WITH
MEMBERSHIPS > “ALPHA™ IN CURRENT
CLASS USING "MFUNCT™ MEMBERSHIPS
GET INDICES AND COUNT OF SAMPLES WITH
MEMBERSHIPS < “BETA™ IN CURRENT
CLASS USING "MFUNCT™ MEMBERSHIPS
GET INDICES AND COUNT OF SAMPLES WITH
MEMBERSHIP <= “ALPHA™ AND >= "BETA IN
ELS(E:URRENT CLASS USING "MFUNCT™ MEMBERSHIPS
GET INDICES AND COUNT OF SAMPLES WITH
MEMBERSHIPS > "ALPHA™ IN CURRENT
CLASS USING "NMFUNC™ MEMBERSHIPS
GET INDICES AND COUNT OF SAMPLES WITH
MEMBERSHIPS < "BETA™ IN CURRENT
CLASS USING "NMFUNC™ MEMBERSHIPS
GET INDICES AND COUNT OF SAMPLES WITH
MEMBERSHIPS <= MALPHA™ AND >= "BETA"™ IN
CURRENT CLASS USING "NMFUNC™ MEMBERSHIPS
END IF
END DO UNTIL
OUTPUT TO "LU™ THE COUNTS OF SAMPLES IN THE
RETg;:ER; LOWER, AND INNER CUT-SETS

ccceeceececcecccececcecccccecccccececcecccecceccecccceeeccceccccccce
SUBROUTINE CUTSET(ALPHA,BETA,KLASES,VCOUNT,CHOICE,LU)

REAL MFUNCT(3,2642),NMFUNC(3,242)

INTEGER VCOUNT,CLASS,VECTOR,CHOICE

INTEGER ACOUNT(3),BCOUNT(3),ICOUNT(3),WRNCNT

INTEGER¥2 KALPHA(3,2642),KBETA(3,242),BETWEN(3,242)
INTEGER%2 WRONG(242)

COMMON /AREA3I/MFUNCT /AREAG/URNCNT,WRONG /AREA5/NMFUNC
COMMON /AREA8/ACOUNT,BCOUNT, ICOUNT,KALPHA,KBETA, BETWEN

WRITE(5,1) ——

»

O 000NN OONOAONINONOOOD

FORMAT(/,2X, "ENTER YOUR CHOICE:*,//,5X,
1°1 - CONSIDER ALL VECTORS',/,5X,
2'2 - CONSIDER ONLY MISCLASSIFIED VECTORS')
READ(5,2) ICHOICE
2 FORMAT(I1)

IFCICHOICE.EQ.2) THEN e
NUMBER=WRNCNT ——
ELSE R
NUMBER=VCOUNT RO
END IF N
DO 12 CLASS=1,KLASES T
ACOUNT(CLASS)=0 e
BCOUNT(CLASS)=0 T
ICOUNT(CLASS)=0 g

IF(CHOICE.LE.2) THEN =
DO UNTILCCHOSEN VECTORS OF DATA SET DO
¢ FOR CURRENT CLASS CHECKED) <
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DO 6 INDEX=1,NUMBER
IFC(ICHOICE.EQ.2) THEN
VECTOR=WRONG(INDEX)

ELSE
VECTOR=INDEX
END IF
IF(MFUNCT(CLASS,VECTOR).GT.ALPHA) THEN
ACOUNT(CLASS)=ACOUNT(CLASS)+1
KALPHACCLASS,ACOUNT(CLASS))=VECTOR
ELSE IF(MFUNCT(CLASS,VECTOR).LT.BETA) THEN
BCOUNT(CLASS)=BCOUNT(CLASS)+1
ElggETA(CLASS,BCOUNT(CLASS))=VECT0R
ICOUNT(CLASS)=ICOUNT(CLASS)+1
BETWEN(CLASS, ICOUNT(CLASS))=VECTOR
END IF
CONTINUE
END DO UNTIL

ELSE
DO UNTILCALL VECTORS OF TEST SET
FOR CURRENT CLASS CHECKED)
DO 6 INDEX=1,NUMBER
IFCICHOICE.EQ.2) THEN
VECTOR=WRONG(INDEX)
ELSE
VECTOR=INDEX

END IF
IF(NMFUNC(CLASS,VECTOR) .GT.ALPHA) THEN
ACOUNT(CLASS)=ACOUNT(CLASS)+1
KALPHA(CLASS,ACOUNT(CLASS))=VECTOR
ELSE IF(NMFUNC(CLASS,VECTOR).LT.BETA) THEN
BCOUNT(CLASS)=BCOUNT(CLASS)+1
ELgEETA(CLASS.BCOUNT(CLASS))=VECT0R
ICOUNTC(CLASS)=ICOUNT(CLASS)+1
BETWEN(CLASS, ICOUNTC(CLASS) )=VECTOR
END IF
CONTINUE
END DO UNTIL
END IF

CONTINUE
END DO UNTIL

IFCICHOICE.EQ.2) THEN
WRITECLU,13)
FORMAT(/,* THE FOLLOWING CONSIDERS *
1 "MISCLASSIFIED VECTORS.")
ELSE
WRITE(LU,14) )
FORMAT(/,*' THE FOLLOWING CONSIDERS °
1 END IF *ALL VECTORS IN DATA SET.")

DO 16 ICLASS=1,KLASES
WRITE(LU,15) ACOUNTCICLASS),ALPHA,ICLASS
FORMAT(/,4X,13,* VECTORS WITH MEMBERSHIP > °,
1F5.2,' IN CLASS",12)
CONTINUE
DO 18 ICLASS=1,KLASES
WRITEC(LU,17) BCOUNTCICLASS),BETA,ICLASS
FORMAT(/,4X,13,* VECTORS WITH MEMBERSHIP < ',
1F5.2,' IN CLASS',12)
CONTINUE
DO 20 ICLASS=1,KLASES
WRITE(LU,19) ICOUNTCICLASS),ALPHA,BETA,ICLASS
FORMAT(/,4X,13,* VECTORS WITH MEMBERSHIP >= ',
1F5.2,* AND <= °*,F5.2,' IN CLASS',I2)
CONTINUE

RETURN
END
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OPTIMIZE
A SUBROUTINE WHICH COMPUTES AND OUTPUTS
A CONFUSION MATRIX OF THE HARD PARTITION
WHICH RESULTS FROM ASSIGNING A DATA
VECTOR TO A CLASS IN WHICH IT HAS
MEMBERSHIP FUNCTION VALUE.

WRITTEN BY: MICHAEL R. GRAY
COMPLETED: APR 84
FILENAME: MGCMTRIX.FTN

CALLING SEQUENCE(FROM A FORTRAN ROUTINE):
CALL CMTRIX(KLASES,VCOUNT,LU,CHOICE)

INPUT VARIABLES(NOT CHANGED): -
KLASES - INTEGER COUNT OF NUMBER OF CLASSES o
VCOUNT - INTEGER COUNT OF NUMBER OF DATA SAMPLES

LU - INTEGER WHICH HOLDS LOGICAL UNIT
NUMBER FOR OUTPUT

CHOICE - INTEGER WHICH SELECTS WHETHER TO CONSIDER "
MEMBERSHIPS PRODUCED BY CLUSTERING :
ALGORITHM(=2) OR CLASSIFICATION ALGORITHM(=1) LT

MFUNCYT - REAL ARRAY 3 BY 262 WHICH HOLDS MEMBERSHIPS
ASSIGNED BY CLUSTERING ALGORITHM, PASSED
IN LABELLED FORTRAN COMMON "AREA3"™

NMFUNC - REAL ARRAY 3 BY 2642 WHICH HOLDS MEMBERSHIPS .
ASSIGNED BY CLASSIFICATION ALGORITHM, PASSED .
IN LABELLED COMMON ™AREAS5" TLk

OUTPUT VARIABLES: :
e
<L
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WRONG - INTEGER*2 ARRAY OF DIMENSION WHICH HOLDS
INDICES OF MISCLASSIFIED SAMPLES, PASSED Sl
IN LABELLED FORTRAN COMMON "AREAG™ e

WRNCNT - INTEGER WHICH HOLDS THE COUNT OF Tl
MISCLASSIFIED SAMPLES, PASSED IN [:::

IN LABELLED FORTRAN COMMON "AREA4"™
ccececceccecceccecccccececcceccecceeccecceccecccccececcccececcce
PSEUDO - CODE

ENTER CMTRIX S
INITIALIZE "WRNCNT" TO 0 -l

INITIALIZE VECTOR INDEX TO 1 I
DO UNTILCCLASSIFICATION OF ALL SAMPLES DETERMINED R

DETERMINE ACTUAL CLASS OF CURRENT VECTOR A
IF(CHOICE <= 2) THEN e
DETERMINE CLASS OF MAXIMUM MEMBERSHIP RN
ELSEOR CURRENT VECTOR FROM T"MFUNCT™ ARRAY R
DETERMINE CLASS OF MAXIMUM MEMBERSHIP s
ENDFOR CURRENT VECTOR FROM "NMFUNC™ ARRAY e

1F
INCREMENT CONFUSION MATRIX ELEMENT (ACTUAL,MAXIMUM)
IF(ACTUAL NOT EQUAL MAXIMUM) THEN -
INCREMENT ™WRNCNT" SO
EN;UIFINDEX OF MISCLASSIFIED SAMPLE IN "WRONG™ ARRAY SR
INCREMENT VECTOR INDEX :
END DO UNTIL e
OQUTPUT RESULTANT CONFUSION MATRIX
RETURN
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gccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC s
SUBROUTINE CMTRIX(KLASES,VCOUNT,LU,CHOICE) jinj

REAL MFUNCT(3,242),NMFUNC(3,242) et
INTEGER CARRAY(3,3),VCOUNT,VECTOR,CLASS '

INTEGER ACTUAL,CHOICE,WRNCNT,START(3),END(3) S
INTEGER¥2 WRONG(242) C
COMMON /AREA3/MFUNCT /AREA5/NMFUNC RO
COMMON /AREA6/START,END /AREA4/WRNCNT,WRONG

DO UNTILCCONFUSION MATRIX “ZEROED™) R
DO 2 I=1,KLASES —
DO 1 J=1,KLASES |
CARRAY(I,J)=0
CONTINUE
CONTINUE
END DO UNTIL

ERRMAX=0.0 v
WRNCNT=0 —

DO UNTILCALL VECTORS ASSIGNED TO A CLASS)
DO 4 VECTOR=1,VCOUNT

DMAX=0.0
DO 3 CLASS=1,KLASES
FIND ACTUAL CLASS VECTOR BELONGS IN L.

IF((VECTOR.GE.START(CLASS)).AND.
1 (VECTOR.LE.END(CLASS))) THEN
ACTUAL=CLASS
END IF

FIND CLASS OF MAXIMUM MEMBERSHIP —

IF(CHOICE.LE.2) THEN an
IF(MFUNCT(CLASS,VECTOR).GT.DMAX) THEN .
DMAX=MFUNCT(CLASS,VECTOR) SR
NUMBER=CLASS
END IF

ELSE g
IF(NMFUNC(CLASS,VECTOR) .GT.DMAX) THEN | N
DMAX=NMFUNC(CLASS,VECTOR) .
NUMBER=CLASS
END IF

END IF :
CONTINUE :
CARRAY(ACTUAL ,NUMBER)=CARRAY(ACTUAL , NUMBER) +1

IF(NUMBER.NE.ACTUAL) THEN
WRNCNT=WRNCNT+1
WRONG(WRNCNT)=VECTOR

END IF

CONTINUE e
END DO UNTIL ™

WRITECLU,S5)

FORMAT(/,* THE HARD PARTITION SHOWN IN THE °
1°CONFUSION MATRIX WAS CONSTRUCTED USING MAXIMUM °*
2°'MEMBERSHIP VALUE FOR EACH CLASS.")

WRITE(LU,6) KLASES,KLASES _—
é FORMAT(® *,7X, CONFUSION MATRIX: ROWS 1-°,12, T
1° SHOW CLASSIFICATION OF CLASSES 1-°'.,I2,

2',°,° RESPECTIVELY.")
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WRITE(LU,7) (I,I=1,KLASES)
FORMAT(/,11X,"CLASS",315)

DO UNTIL(CONFUSION MATRIX PRINTED)
DO 9 INDEX=1,KLASES
WRITEC(LU,8) INDEX,(CARRAYCINDEX,I),I=1,KLASES)
FORMAT(/,13X,11,4X,13,2X,13,2X,13)
CONTINUE
END DO UNTIL

RETURN
END
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degree in electrical engineering from the Uriversity of
Missouri-Columbia in 1984.
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